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ABSTRACT

Coherent diffraction imaging has enabled high-resolution noninvasive imaging of various
specimens in nanoscale resolution regardless of optical performance of imaging optics, fully
utilizing advantages of short-wavelength sources, especially for X-rays. In addition,
development of X-ray free-electron lasers has realized time-resolved imaging for tracking
ultrafast dynamics and phase transitions of diverse systems in outstanding spatiotemporal
resolution. Despite its superiority, rising of emerging materials with complicated properties

demands for enhancements on performance and functionality of diffraction imaging methods.

In this thesis, we introduce theoretical backgrounds for coherent diffraction imaging
and dedicated improvement methods by employing new experimental techniques and deep-
learning methods. The proposed experimental techniques include multidistance measurements
to overcome a trade-off between resolution and reciprocal-space sampling and a use of vortex
beams, which exhibit topological wavefront structures and inherent orbital angular momenta,
to reinforce sensitivities on complex or chiral structures. On the other hand, the developed deep-
learning methods enable denoising and real-time phase retrieval of noise-buried, partially
damaged diffraction patterns captured by single-pulse measurements using the X-ray free
electron lasers. Advancements of coherent diffraction imaging by these methodological
developments will assist future scientific research to investigate a wide range of advanced

materials with characteristic properties.
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I. Introduction

X-ray microscopy has been widely used for high-resolution imaging of various specimens
including both crystalline and non-crystalline samples [1]. Utilizing short wavelength and high
penetration power of the X-rays, it offers much higher resolution compared to optical
microscopy while dealing with micron-sized specimens, which cannot be treated by electron
microscopy. However, its resolution is limited by the performance of image-forming optics,
restricting high potential of the X-rays. In this regard, lensless imaging methods have been
requested strongly in the X-ray regime with their aberration-free diffraction-limited imaging

performance.

Coherent diffraction imaging (CDI) is a lensless imaging method measuring diffraction
patterns rather than object images formed by the optics. CDI offers diffraction-limited
resolution without any aberrations in principle. However, a main problem of CDI is that
diffraction signals lost their phase information during measurements, so-called the phase
problem; therefore, a direct inversion from the Fourier space, or equivalently reciprocal space,
to the real space is not possible, requiring an additional phase recovery process. Such procedure
is called phase retrieval and is required to solve phase problems typically suffered in
crystallography and optics [2]. Starting from Gerchberg and Saxton in 1972, various iterative

algorithms have been suggested to solve phase problems [3,4].

The first experimental realization of CDI for a nonperiodic object was accomplished by
Miao et al. in 1999 [5]. After this success, CDI has been widely used in multidisciplinary
sciences, that require high-resolution imaging, together with its variants, such as Bragg CDI,
Fresnel CDI, ptychography, etc., and is also possible to be applied to electron diffractions,
facilitating atomic-resolution imaging for several specimens [6,7]. Moreover, development of
X-ray free-electron lasers (XFELs) has enabled time-resolved studies with superior

spatiotemporal resolutions in few-nanometer, sub-picosecond scales [8—11].

Despite the excellence of CDI, its performance has been limited by several constraints
that are suffered in actual experimental situations. In this circumstance, we developed dedicated

methods to enhance performance and functionality of CDI in two main branches of introducing



new experimental techniques or employing deep-learning (DL) models, overcoming such

limitations.

The methods in the first branch includes multidistance CDI, off-axis vortex beam
ptychography, and helical dichroism on ferroelectric topological defects [12,13]. First, the
multidistance CDI overcomes a trade-off between resolution and reciprocal-space sampling for
large specimens with finite-size detectors by measuring diffraction patterns at different
distances. Next, the off-axis vortex beam ptychography offers edge-enhanced, phase-sensitive
images of weakly scattering specimens by using off-axis vortex beams. Last, helical dichroism
on ferroelectric topological defects experimentally demonstrated, and further application on

Bragg ptychography is suggested for functional imaging of ferroelectric systems.

The methods in the second branch consists of DL models for denoising and real-time
phase retrieval of noisy, imperfect diffraction patterns measured using XFELs [14,15]. When
using XFELs, each diffraction pattern is measured by a single ultrashort pulse in diffraction-
before-destruction scheme due to their intense X-ray pulses that instantly destroy specimens
[16,17]. In this regard, the measurements undergo strong noises and partial omissions from
limited photon counts in a single pulse and use of beam stops to occlude intense direct
transmission. Conventional methods are hard to handle such obstacles, and this becomes more
severe for high-repetition-rate XFELs that generate huge amounts of data. In this circumstance,
the proposed DL models offer working solutions, facilitating denoising and real-time phase

retrieval of noise-buried, partially damaged diffraction patterns.

This thesis aims to introduce the abovementioned newly proposed methodologies with
their basic theoretical backgrounds. It covers the background knowledges including diffraction,
phase retrieval, and vortex beam in Part II and introductions of newly proposed methodologies
to improve performance and functionality of current diffraction imaging methods in Part III and
IV. Through this thesis, it is expected to have better understanding and further insights on

diffraction imaging and its application.



II. Background

1. Diffraction of electromagnetic waves

1.1. Introduction

Diffraction is a phenomenon that waves deviate when passing obstacles, and it is one of the
important properties of the waves. Diffracted waves are forming certain patterns by constructive
and destructive interferences, and obviously, such patterns also appear in a case of light, an
electromagnetic wave. The interference of light was first experimentally demonstrated by
Thomas Young in early 1800s through his well-known double-slit experiment [18]. Since his

experimental efforts, a wave nature of the light has been generally accepted.

In a quantum-mechanical perspective, the light can be described as photons, which are
quanta of the electromagnetic field. Accordingly, the diffraction of the light can be understood
as a collective behavior of the photons scattered by the obstacles, where the interference of their
wave functions leads to characteristic diffraction patterns. In modern condensed matter physics,
this point of view is necessary to interpret diffractions with various materials such as strongly
correlated, exotic, and quantum materials. Thus, understanding both concepts is important to
comprehend basic background of diffraction imaging methods and further applications. In this
chapter, an overall review on diffraction of electromagnetic waves and a brief introduction of

CDI and ptychography would be covered.

1.2.  Electromagnetic wave equation

Electromagnetic beams, which are generated by various kinds of resonators, can be described
by the inhomogeneous electromagnetic wave equation [19]. Starting from the Maxwell's

equations, the curl of the magnetic field satisty the following relation.

VxB = o]+~ (1.1)

, where E is the electric field, B is the magnetic field, and ] is the current density. Here, the

scalar potential and vector potential are introduced for further derivation of the electromagnetic



wave equation, defined as follows.

E=-Vo oA
- T e (1.2)

B=VxA

, where @ is the scalar potential and A is the vector potential. When the vector potential

follows the Lorenz gauge, it satisfies the following condition.

1 0"
. L —_——
VoA S ——=0 (1.3)

, where the superscript L denotes the Lorenz gauge. As the electromagnetic fields are varied
by e ! with the angular frequency, w = ck, where k is the wavenumber, the scalar
potential becomes ® = —(ic/k)V - AL, Thus, the electric field of the electromagnetic beam

can be expressed only with the vector potential as follows.

0AL  ic
E= -Vl — 7 = EV(V . AL) + ickA" (1.4)

Substituting the electric and magnetic fields with the vector potential, Eq. (1.1) becomes as

follows.
VX (VxAY) —V(V-AY) — k2AL =y, (1.5)

Using the curl of the curl identity, V x (V x AY) = V(V-AL) — V2AL| Eq. (1.4) finally

simplified as follows.
(V2 + kA" = —p,) (1.6)
This equation is the inhomogeneous electromagnetic wave equation.

Considering the electromagnetic beam under the transversality condition (i.e., V- A =
0 or k- A = 0 with the wavevector, k), that is usually assumed for paraxial beams, Eq. (1.6)

becomes equivalent with the Helmholtz equation defined as follows.
(V2 +k?H)Ar =0 (1.7)

When the beam is propagating along z-axis, the vector potential of the beam can be simply

-4.-



defined as A'(r) = eu(r)e™?, where & is the polarization vector, that is orthogonal to the z-
axis. Substituting the vector potential with the above equation, Eq. (1.7) becomes as follows

[19].

du
Viu+ 2ik— =0 (1.8)
0z

For the paraxial beams, the paraxial approximation is frequently used for the simplicity. Such
approximation is valid under the following conditions that u(r) is a slowly varying function

along z-axis.

0%u

352 L |V2u] (1.9

, where 1 denotes the transverse directions. Then, Eq. (1.7) becomes the paraxial wave
equation as follows.

5 _du
Viu+2ik——=0 (1.10)

A solution of Eq. (1.10) includes various Gaussian modes, which would be discussed in Chapter

3.

When the polarization vector of the beam is not perpendicular to its wavevector, the
divergence of the vector potential becomes nonzero, not satisfying the transversality condition.
The Lorenz gauge becomes no longer convenient because of the nonvanishing scalar potential.
In this circumstance, the Coulomb gauge might be preferred, in which the scalar potential
vanishes and the vector potential is transverse [20]. When the vector potential follows the

Coulomb gauge, it satisfies the following condition.
V-AC =0 (1.11)

, where the superscript C denotes the Coulomb gauge. Ignoring the scalar potential, the electric

field of the electromagnetic beam can be expressed with the vector potential as follows.

E = ickAC (1.12)



Thus, comparing Egs. (1.4) and (1.12), the vector potentials in the Lorenz and Coulomb gauge

have the following relationship.

V(v - A
ac YO AD

o AL (1.13)

1.3. Quantized radiation field

In quantum mechanics, photons can be treated as the excitations of the radiation field, replacing
the Fourier coefficients by annihilation and creation operators if the radiation oscillator has
canonical variables composed of noncanonical operators [21]. Starting from the classical
radiation field, which satisfies the transversality condition, the vector potential can be
decomposed by Fourier series at the instant (¢ = 0) with an assumption of the periodic boundary

condition as follows.

1
AGDlico = 75 D ) ena(Otea(r) + i (O 0] (114)
k

a=1,2

with the Fourier component, uy,(r) = e@eikT where a is an index for orthonormal
vectors, which are perpendicular to the wavevector under the transversality condition. Here, the

Fourier components satisfy following conditions.

3 * —
fd ruk’a . uk,,a, = V(sk,kl(sa’al

o (o ) s s
o O L

(1.15)

Simply assigning time-dependent terms, e ~!“?, to the Fourier coefficients, the vector potential

becomes as follows.
1 (a) pikT * (a) ,—ikr
A(r,t)=\/—722[ckﬂ(t)£ kT 4+ ¢ (D)e@e ] (1.16)
k «

= \/LVZ Z[Ck’a (O)S(a)ei(k-r—wt) + Cl’z’a(o)g(a)e—i(k.r_wt)]
k «



For the quantized radiation field, the Fourier coefficients should be substituted by

Cra(t) = Vh/20€0 ayo () and cj o () - Vh/2we, af (), where ag,(t) and af,(t)

are annihilation and creation operators, respectively. Then, Eq. (1.16) becomes as follows.
1 . :
A(r,t) = \/_VZ Z Jh/2we, [ayo (@™ + af ()e@e k] (1.17)
k «a
The Hamiltonian operator of the quantized radiation field is defined as follows.
1 1
H= —f &r <60|E|2 +—|B|2) (1.18)
2 Ho

Using Eq. (1.15), the first part of Eq. (1.18) is calculated as follows.

w0 [ 4. |PA]
H _ZJdr R (1.19)
hw
= WZ Z f 1 (Ag ol + af JUpg) - (akr,arukr_ar + a,t,,a,u;‘(,ra/)
kk' a,a’
hw Tt
= TZ Z [(ak,aakr_ar + ak_aak,’a/) 6k,—k’6aa’
kk' a,a’

+ (ak_aa,t,,a, + a,tlaakr'ar) 6k.k’6a,a’]
hw
— by gt
= 2 2 et + )
k «a

Next, the second part of Eq. (1.18) becomes as follows.

1
H® =—fd3r |V x A|2 (1.20)
2u

0
hc?
= 4a)VZ z f d3r (ak_av X Up o + a}:’av X uk,a)

kk' aa’

. (ak/’alv X Uy of + a;i,’a,v X u’;c,’a,)

Using the vector calculus identities with the transversality and periodic boundary conditions,

the dot product of the curls in Eq. (1.20) is simplified as follows.



j & (VX ) - (VX ) = f & [V {1tq x (VX 2y )} (1.21)
Pty (V% (T x 1t )]
= f d3r [V - {ue X (VX upy 0)}
Pty (007w ) — Va0 )]

=— f A3ruy g - VU

W\ 2 5 .
= (?) d ruk,a . uk,’a,

Substituting the above results with Eq. (1.15), Eq. (1.20) becomes as follows.

hw
H® = Tz Z I:(ak'aakl’al + a,tlaa;:,,a,) Sk,—k'daa' (1.22)

kk' o’

+ (ak,a’a]t’_a’ + alt,aak',a') 5k,k' 60{,0{']

hw
— T t
=7 2 D (et + )
k «

As a,taak’a = Ny, and ak,aa,ta = Niq + 1, where Ni, is the number operator, the

Hamiltonian operator finally summarized into the following equation.
hw
= TZ Z(akﬂ“;a + Qe W) (1.23)
k «a

- ZZ (N,w + %) ho

1.4. Light-matter interaction

The interaction between the quantized radiation field and nonrelativistic electrons of an atom

can be expressed based on the interaction Hamiltonian defined as follows [21].

e e?
Hipe = Z [— %{Pi “A(r, t) + A(r, t) - pi} + WA(TL'; t) - A(r;,t) (1.24)
13

, where p is the momentum operator and i is an index for each atomic electron. If the spins

-8-



of the atomic electrons become significant, they interact with the magnetic field; therefore, the

interaction Hamiltonian additionally has the following term.
HOP™ = Z 01 [VXAQ, Ol (1.25)

, where @ is a tensor describing the spin interaction.

For the calculation of the absorption and emission of a photon by the atom, the
following relations associated with the momentum operator are used. First, the momentum

operator, p = —ihV, satisfies the following relation under the transversality condition.
p - (AY) = —iR(V - AP — ihA - (Vp) = —ihA - (V) = A - (p) (1.26)

The momentum operator is applied to the everything on the right, and this relation makes the
calculation easier by replacing p - A with A - p. Next, the square of the momentum operator

has the following commutation relation.

[p%,r1¥ = plp(r)] — rlp(PY)] (1.27)
= [p(p)]Y + 2(pr) (pY) + rp(PY)] — rp(PY)]
= —h2(VD)y — 2h%1VyY
= —2h*Vy
= —2ihpy
Considering the Hamiltonian operator, H, = p?/2m, the momentum operator can be replaced

as follows.

[, ] = 7 [Ho 1] (128)

As mentioned in Section 1.3, the vector potential is formed by a linear combination of
the annihilation and creation operators, leading to the quantization of the radiation field. In the
case that an atom absorbs a single photon, ny, — ny, — 1, and its state changes from the

initial state to the final state, g — f, the radiative transition can be described as follows.

(f e = 1Hine| g5 1) (1.29)
Using the Eqgs. (1.17) and (1.26), Eq. (1.29) becomes as follows. Here, only components with
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the single annihilation operator did not vanish for the single-photon absorption.

e h

mc 2wV,

nka ik- () .
— 1] etkrigla
Za)VEOE fi e = 1] 7@ -,

(F; nka—1|2[ak (0e@ei®r=o] py|g; ng)  (130)

95 Mo — ) —iwt

Similarly, in the case of the radiative transition from | 9 nk,a) to |f; Mg + 1) by the single-

photon emission, it can be described as follows.

e .
_E Zwve_o <fl nk‘a + 1| Z[a,—"—‘a(O)g(a)e_L(k'ri_wt)] . pl |g’ nk,a) (1.31)
i
+1)h | |
= _% (nl;Z)VEO) Z(f' Mo + 1| e~ ikTig(@) 'pi|g; Nie + 1)em)t
i

Typically, as the wavelength is typically much larger than the atomic radius, A = 2m/|k| >
|r|, we can approximate e~kTi as e*Ti =1 — ik -r; + (k-71;)?/2 + --. When only the
leading term does not vanish as e~*7i ~ 1, such approximation is called electric dipole (E1)

approximation.

1.5. The Lippmann-Schwinger equation

To describe the scattering process of a particle by a scatterer, which has a nonzero potential
energy, V,the Hamiltonian can be simply defined as H = H, + V [22]. If the particle does not
lose the energy during the scattering process, this process is called elastic scattering. For the

elastic scattering, the time-independent Schrédinger equation is defined as follows.

Holp) = Elp),  (Ho +V)IY) = Ely) (1.32)

, where |¢) and [ip) are the solution for free and scattered particles, respectively. As [i)

becomes equivalent with |¢p) when V — 0, the solution is desired to have the following form.
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19) = 16) + G Vi) (1.33)

However, a complication arises by the singularity of 1/(E — H,). To resolve such issue, the

small imaginary component, +ig, is added to the energy eigenvalue.

[p®) = 1) + V@) (1.34)

This equation is called the Lippmann—Schwinger equation. Note that it is a ket equation

regardless of its representations.

Using the position basis, the Lippman—Schwinger equation becomes as follows.

(rlp®) = (rigp) + f 3 (4%%) (' [V[p®) (1.35)

First, the first part in the integral term can be expanded with the momentum operator as follows.

< [ Ho+l€ fd3 'fd3 " rlp') (1.36)
1 rn 14 !
Ny I———

As (r|p') = ei”"r/h/(27th)3/2 and (p"'|r') = e‘i”"'r’/h/(Zﬂh)3/2, Eq. (1.36) becomes as

follows.

1 -y 5(3)(17, - p”) N
— | d3p’ eir r/h ] d3p" e~ T /h 1.37
(2nh)3j p P E—-p?/2m+ie (1.37)

1 fd3 o e rr)/n
~ (2mh)? P gz p'*/2m+ is

Substituting by E = h?k?/2m, p’' = hq, and &' = 2me/h?, Eq. (1.37) becomes as follows.

2m 1 2n 2 lq|r -1'|cos 8
?(277)3[ dq] dgbj d(cos 6) (1.38)

2 tie’
2m q(elq|r r | _ e—lq|r r |)

= d —
h? 4ﬂ2|r—r’| o 1 q*> — k? F i’

As the integrand is an even function, the integral term in Eq. (1.38) can be calculated using the
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residue theorem for the contour enclosing the singularity. Note that the singularity for each term

has an opposite sign, considering the sign of the coefficients in the exponents.

1 r® q(eiq|r—r’| _ e—iq|r—r’|)
Ef_oo dq q?> —k? Fie (1.39)

_ . R qeiqlr_rll _ R qe_iqlr_r,|
= RS g iz q2 — k2 F ie’ €S q=5/k2tie’ q2 — kZ F ie’

— nieii\/kzii8’|r—r’| ~ T”'eiik|r—r’|

Thus, Eq. (1.36) finally becomes as follows.

1 , 2m eiik|r—r’|
<’"|E—H0 iie|r>_ TR dmir— 1| (1.40)
Using the above result, Eq. (1.35) becomes as follows.
2m eiik|r—r’|
®) = Il RFE Nyl @
() = i) = 5 [ @ o VI ) (14D

Figure 1.1 - Schematic diagram for the scattering of a particle by a scatterer.

For an explicit calculation of the wave function, a potential, which is local, satisfying
@'|\VIr")y =va)§® @' —r"), is considered. This local potential is reasonable in practical
scattering schemes, where scatterers are mostly electrons, which have finite-range potentials.

Then, Eq. (1.41) becomes as follows.

iik|r—r'|
(rlw(i))=<r|¢>—i—rffd3r' ° V) [p®) (1.42)

ilr — 1’|
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In the practical circumstances, the observation is conducted much far from the scatterers, |r| >

r'|. The distance between the scatterer and the observation point is simply written as follows.
p ply

lr—7'| = \/rz —2rr' cosa + r'? (1.43)
2r' r'? Yz
<1 ——cosa+ —2>
T T
~r—7r-1

, where a is an angle between two position vectors, r and r’. This approximation gives
1/|r —7'| =~ 1/r and etiklr—r'| & gikroFik'™" with the outgoing wavevector, k' = k.
Note that the free-particle wave function, |¢), with the wavevector, k, is defined as (r|¢) =

e'®7 /(2m)3/2. Then, the wave function with the positive sign becomes as follows.

ikr

(rlp @) ~ (rl¢) ——mzmj A3 e~ Ty () (r [y ) (1.44)
ikr
= W [eik-r + eTf(k,v k)]

Here, the scattering amplitude, f(k’, k), is defined as follows.

, (2 )3 2 ) —lk'-r' ) , .
faei= -0 @ V) (1.45)
3 (271)3 2m L , “
=- % d3r' (K| W () (r' [ )
3 (271)3 2m .
SR M

Similarly, for the scattered-particle wave function with the negative sign, the coefficient of the
scattering amplitude in Eq. (1.44) and the bra-ket term in Eq. (1.45) are replaced by e~*" /r
and (—k' |V|1/)(_)>, respectively.

The differential cross section, do/df), which is the probability of particles scattered
to a specific differential solid angle element, satisfies the following relation, using the terms in

Eq. (1.44).
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do Ijscatl
—dQ=—"r%d0 = -
dQ |]inci| |elk'r|2

= |f (K, )|?dQ

ikr ! 2
(™ /ol , o (1.46)

, where jinei and jsear are the fluxes of incident and scattered particles, respectively. Thus,

the differential cross section is defined as follows.

do 5
- = [f(K, k)] (1.47)

1.6. The Born approximation

For a calculation of the differential cross section, Eq. (1.45) is yet difficult to compute due to

the unknown scattered-particle wave function, |l/)(+)) [22]. When the scattering by the

scatterer is not strong, the wave function (r’|¢(+)> can be approximated by (r'|¢). Such
approximation is called the first-order Born approximation. Under this approximation, the

scattering amplitude becomes as follows.

1 2m oy
fOE& k) = iz d*r’ e TV (r") (1.48)

,where Q is the momentum transfer, which is defined as Q = k — k'. The integral term in Eq.
(1.48) is equivalent with the 3D Fourier transform of the potential of the scatterer, V, with

respect to the momentum transfer, Q.

For the validity of the first-order Born approximation, (r’|1p(+)) is not far from
(r'|¢) inside the range of the finite-range potential. Considering the exact expression in Eq.
(1.42), the second term should be negligible, especially at the center of the scatterer, r = 0,

giving the following condition.

12m

e 3..7 e'r N ikr'
i 7 d*r = V(re <1 (1.49)

For the medium with a complex refractive index, n, the scattering potential is defined as

follows [23].
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VG k) = Vo [n2(r, k) — 1] (1.50)

, where V, = h?k?/2m. In the X-ray regime, where the complex refractive index is typically
represented as n =1 —§ — if with very small § and g, the scattering potential becomes as

follows.
V(' k) = =2Vy,(1 —n) (1.51)

Substituting the scattering potential, Eq. (1.49) becomes as follows.

k? .
5(1 —n)fdr’fd@fddb r' sin @ k7 (1+cos®) (1.52)

= [2k(1 — n)e™*? sin kp|

<2k|1-n|«K1
, where p is the outer boundary of the finite-range potential. As the first-order Born
approximation represents single scattering across the medium, the thickness of the medium
must be considered for a practical calculation. In this regard, Eq. (1.52) becomes as follows
[24,25].

2mAn
|1 —n|

t < (1.53)

, where t is the thickness of the medium and 7 is a small coefficient, roughly 0.2 for the X-
ray regime. When the above condition is not met, the multiple scattering effect should be
considered. In this circumstance, the multislice method is generally used to reflect the multiple

scattering from the medium [26].

1.7.  Fresnel-Kirchoff diffraction formula

Previous sections have described the scattering quantum-mechanically. In the optical point of
view, the scattering events have occurred during the waves propagating in the medium, and
these events resultantly lead to a macroscopic interference of the waves, which is called
diffraction. The diffraction has been classically described by the Huygens—Fresnel principle,

treating each point of the wavefront as a spherical wave source. Kirchhoff mathematically
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showed that the Huygens—Fresnel principle is an approximate form of a particular integral
theorem for the homogeneous wave equation [23]. Considering a strictly monochromatic scalar
wave, V(r,t) = U(r)e it satisfying the Helmholtz equation, (V? + k?)U = 0, the Green’s
second identity gives the following relation with an arbitrary function, U’, if both U and U’

are twice continuously differentiable in the integrating region.

dv (UV?U' — U'V?U) = — as Ua—U’—U’a—U (1.54)
on on
v S

, where v is a volume enclosed by S and d/dn is a directional derivative along the inward
normal direction of dS. When U’ also satisfies the Helmholtz equation, (V2 + k2)U’' = 0,
the integrand in the left side of Eq. (1.54) vanished, giving a result as follows.

ﬂds AT (1.55)
. on on) '

Figure 1.2 - Schematic diagram for the derivation of the Kirchhoff’s integral theorem.

For an explicit calculation, U'(r) = e™*S/s, where s is the distance between r and
a certain position, P, is assigned. As U’ has a singularity at s = 0, the integrating region must

exclude a small sphere with a radius of &, giving the following equation.

Uf ¥ fL)dS [”%<>‘Z—Z =0 (156)

As S’ is known, the second term becomes as follows.
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( k- 1) - ﬁaz] (1.57)

&

9 iks lksaU
[loos i) -5 - ] oo

out .
=f dQ (ike—l)U—s—]e”‘s
Ql on

, where Q' is a solid angle spanning S'. Limiting € to zero, Eq. (1.55) finally becomes as

UP) = ! as |U G e ou 1.58
()_EHS [%(s)_sﬁ] (1.58)

This equation is called the Kirchhoff’s integral theorem.

follows.

Figure 1.3 - Schematic diagram for the derivation of the Fresnel-Kirchhoff diffraction
formula.

When a monochromatic scalar wave from a point source at O propagates through an

aperture, the Kirchhoft’s integral theorem gives the following relation.

R Y Y R e

, where A, B, and C denote the opening, obstructing, and remaining parts of the spherical

integrating surface centered at P, respectively. As A and B is identical to the cases with the

waves not affected by the aperture and the waves completely blocked, respectively, it is
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reasonable to set following conditions for these regions.

Aet™  9U  Aek /. 1
U= , — = (lk — —) cos(n,r), onA
r on T r (1.60)
ou
U=0, — =0, on B
on

, where A is a constant. Meanwhile, if the radius of the spherical integrating surface is so large
that the disturbance at P does not affected from its contribution, the integral term on C

vanished. Thus, Eq. (1.59) finally becomes as follows.

UP) = — ﬂ [Ae;kr g < ;ks)—e;ks‘qerikr (ik—%) cos(n,r)] (1.61)

- - en - - ]

iA elk(r+s)
=-23 f ds — [cos(n,T) — cos(n, s)]
A

This equation is called the Fresnel-Kirchhoff diffraction formula.

When r and s deviate by (£,7) on the aperture plane, giving r?2 = (x, — §)? +
o —m)?+2z& and s? = (x —&)2+ (y —1n)? + z? in the Cartesian coordinate, r and s

can be expanded with power series as follows.

,_Xo§yon 40t (6od +yom)*

r=r — ’ /] 3
r 2r 2r’ (1.62)
, xE+yn & +n* (x€+yn)?
S=S = / + / - 3
S 2s 2s’

,where r'* = x2 + y2 + z2 and s'* = x2 + y% + z2. Then, Eq. (1.61) becomes as follows.

i cos 8 Aeik(r'+s .
U(P) ~ —— — ﬂ dédn etk Gm (1.63)
A

, where & is an angle between P and n on A, giving cos(n,r) — cos(n,s) = 2 cos 6. The

function of ¢ and 7 in the exponent of the integrand is defined as follows.
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fEm=(-2-5)§+ (-2 (1.68)
e -2

If the quadratic terms in & and 7 are negligible, this is called Fraunhofer diffraction.
Otherwise, if the quadratic terms cannot be neglected, this is called Fresnel diffraction. Note

that the quadratic terms can be ignored if the following condition satisfies.

1171 1 1 /x y 2 1 ,x y \2
2 4 2 0 0
21\r T oSt In) —a\gSt e L
2[<T'+S')(§ +77) T'(T’€+r’n) Sl(srf_i_sln)]<</1 ( 65)
1.8.  Bragg’s law and Ewald sphere
é,
7] / \ 0 éx J

Figure 1.4 - Schematic diagram for the derivation of the Bragg’s law.

Considering a periodic partially reflecting layers with a regular interval of d, the incident lights
are reflected at each layer, and two neighboring lights have a different optical path length,

giving the following relation for a constructive interference [27].
2d sin @ = mA (1.66)

, where m is a positive integer. This is called the Bragg’s law. In the point of the reciprocal

space, the momentum transfer corresponding to the Bragg’s law is defined as Q = ky — k; =

(4m/A)sin@ é, if |k;| = |kf| = k. This gives the constructive interference position at
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2k sin @ in the reciprocal space correspond to d in the real space along the same direction.

As the size of the incoming and outgoing wavevectors, k; and kg, is conserved in the
elastic scattering scheme, it is convenient to construct a sphere with a radius of k = 2m/A. This
configuration is called the Ewald sphere. When the measurement is accomplished by a detector
pixelated by N-by-N, of which the plane is perpendicular to and centered at the incoming
wavevector, k;, the momentum transfer, @, which varies across the detector plane, is defined
as follows.

2w . 21 .
Q= —sin 204Gy — 7(1 — c0s 20)qy (1.67)

, where 4/, 4,y and @5 are two in-plane and one out-of-plane bases with respect to the

detector plane, respectively.

Detector

)26

Ewald sphere

Figure 1.5 - Schematic diagram of the Ewald sphere.

In the practical situation, the maximum scattered angle spanned by the detector plane
is defined as 20,,,, = tan"1(Np/2z), where p is the pixel size of the detector and z is the
sample-to-detector distance. Using this quantity, the maximum momentum transfer along g,

is defined as follows.
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Qmax =

m__Np/z —2—”< _ z >A (1.68)
LZrmpr ' "2\ JZr ) |

Np 1 /Np\? R 7 [/Np\? .
—7[1‘5(2) +"']‘h’7[(§) s

When the detector is far from the sample, (Np/2z)? < 1, Eq. (1.68) becomes as follows.

nNp _

Qmax ~ qu' (169)

This gives the real-space equivalent as d = 2Az/Np. This is the full-period resolution for the
finite measurement of the diffraction pattern. In the point of diffraction imaging, the pixel

resolution is a half-period resolution, given as d,y, = Az/Np.

Unfortunately, the curvature of the Ewald sphere causes the nonlinearity of the
momentum transfer corresponding to each pixel that is arranged regularly. Considering up to
quadratic terms, (Np/2z)?, in the series expansion of Eq. (1.68), the error along g, is

calculated as follows.

2

2z

p 1/p\2 1 nNp 1
[ ( ) |13 (1.70)

m Np\*| _ w(N%—1)p?
50,1 =21 5 ]="

2z 81z3

In addition, except for the in-plane components, the out-of-plane components also arise from

the Ewald sphere curvature. Similarly, the maximum error along g5 is calculated as follows.

17 2

801 <57 (

Np)2 n(Np)Z _ mN?p
21

2z)  A\4z) ~ 16122

1 (1.71)

Thus, the effect of the Ewald sphere curvature should be considered carefully for diffraction

imaging measuring high-angle signals, which is required for the higher resolution.

Reminding the result of the first-order Born approximation in Section 1.6, Eq. (1.48)
implies the scattering signals represent 3D Fourier transform of the real-space distribution of
scattering potentials, mostly by electrons. However, the detector only measures the cross section
of the 3D diffraction pattern, which correspond to the 2D projected distribution; therefore, an

additional angle scan is required to obtain a full 3D diffraction pattern.
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gcattering plane

Figure 1.6 - Schematic diagram of ¢-scan.

In this circumstance, the azimuthal scan, ¢-scan, is typically used for 3D diffraction
imaging. For the sake of simplicity, the calculation is under the reflection geometry, but the
result would be identical. When the sample is rotated along é; = é, with an amount of ¢, the
in-plane bases, é; and é,, are simply derived by the rotation matrix as é; = cos ¢ é, +
sin¢é, and é, = —sin¢g é, +cos¢é,. As the Fourier transform satisfies F[f(Ar)] =
F(AQ), where F represents the Fourier transform, F(Q) = F[f(r)],and A is an orthogonal
matrix, including the rotation matrix. Thus, the in-plane components of the reciprocal space on

the detector plane become as follows.

{611r =sinf g, + cos8 4z =sinf cosp g, +sinfsing g, + cosb g, (1.72)

42 = 4 =—sin¢@x+cos¢qy
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Figure 1.7 - Reciprocal-space regions spanned by the ¢-scans for different 0s.

When 6 = 0° and Q.., = 0, where Q.., is the momentum transfer at the center of
detector plane, this case is equivalent with the angle scan of conventional tomography [28].
When the rotation axis is tilted, 8 > 0°, this case is equivalent with the angle scan of
laminography, which is a kind of tomography specialized to flat objects. Unlike the case of 8 =
0°, missing cones along §, appeared in the reciprocal space, excluding a certain portion of the
3D reciprocal-space information. However, when the target object is flat, the angle scan of the
conventional tomography causes missing wedges by the limited angles from the sample
morphology, and laminography becomes advantageous. Otherwise, when the rotation axis is
parallel to the incident beam, 8 = 90°, this case does not give the 3D reciprocal-space
information. Note that there is a special method named ankylography, which reconstructs 3D
real-space distribution from a single diffraction measurement spanning a large portion of the

Ewald sphere surface with very high angles [29].
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Figure 1.8 - Schematic diagram of 6-rocking.

In the reflection geometry, especially the Bragg reflection geometry, Q.o = 2m/d,
where d is an interatomic spacing of a crystal structure, 8-rocking, which is an angle scan of
a small step angle of 6, with a fixed detector position, 26, also gives the 3D reciprocal-space
information. Starting from the initial momentum transfer, Q..n, = (2m/A)sin26 G, +

(2m/2)(1 — cos 20) G5, the momentum transfer after 8-rocking defined as follows.
, 2w ) . 21 R
Qien = - [sin(26 + 6,) — sin 6,]G, + - [— cos(26 + 6,) + cos 6,]G5 (1.73)
Assuming 6, «< 1, the above equation becomes as follows.

) 2 . . ~
Qcen = a1 [sin 26 cos 6, + cos 20 sin 6, — sin 6,]G (1.74)
21
+ o [— cos 20 cos 6, + sin 20 sin 6, + cos 6,]G5

2T R 21 ] R
~— [sin26 — 6,.(1 — cos 20)]G, + 7[1 — cos 26 + 6,.sin 261G,

Using the above result, the deviation of the momentum transfer is calculated as follows.

21

) 0. sin 26 45 (1.75)

, 2 R
AQcen = Qcen — Qcen = _TGr(l — CosS 29)q1’ +

41 oA 4 ) R
=—79rsm 9qlr+70rsm9c059q3r

T
= —79rsm9qx

Thus, 8-rocking is a translational scanning of the detector plane along §, in the reciprocal

space.
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In the point of the reciprocal-space sampling, dQ, ¢ -scan and 6 -rocking give

different out-of-plane reciprocal-space samplings along G/, giving the following relations.

dQy = Qy[sin(d + ¢,) — sinp] = Q. cos¢p, for p-scan

2n . (1.76)
dQy = - 6, sin 26, for 6-rocking

, where Q, = 2mmp/Az with a positive integer, m, smaller than N /2. When the sampling
of out-of-plane components, d@Q5s, is matched with the sampling of in-plane components,
dQ, and dQ,s, which are 2mp/Az, the required step angle is calculated as follows for each

scan. Note that the calculation for ¢-scan uses Qy .x = TNp/Az.

¢ = ———, for ¢-scan
12Vcos 0] (1.77)
0. = N for 8-rocking

However, both scanning methods cause additional shifts of in-plane components, so the step
angles cannot be simply defined. For ¢-scan, the step angles can be corrected by 1/cos ¢ or
1/sin ¢ depending on the range of ¢, assigning equally sloped angles, not equally angled, for
tomography [30]. For 6 -rocking, d@Q5 cannot be matched to the sampling of in-plane
components because the additional shift of —(2m/1)60,.(1 — cos 26) also exists along §,’.
Thus, the shifts along both axes should be considered and they are preferred to have integer
ratios with respect to the in-plane sampling that is defined by detector pixels. Also, the object
size should be considered for the oversampling along g/, and this would be discussed in

Chapter 2.

1.9. Coherence

Coherence is the degree of correlation for the phase across the wavefield [27]. It is generally
expressed in the form of lengths, longitudinal and transverse coherence lengths, that imply the
spatial boundaries assuring certain degrees of the coherence along the directions. Considering

typical quasi-monochromatic plane waves, AA/A « 1, the longitudinal coherence length, &,
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is defined as a longitudinal distance showing a half-period difference between the waves with
wavelengths of 4 and A + AA, where they are completely canceled out. Thus, it satisfies the

following equation.

§ & 1 AAHAD R
2 axo 228 2a1 Tam (1.78)
| . [
[
¢

Figure 1.9 - Schematic diagram for the transverse coherence length

Similarly, the transverse coherence length, &, is defined as a transverse distance with the same
condition, but instead the waves are assumed to be originated from different position with a
lateral deviation of D and have a same wavelength of A. At the converging point R away
from the origins, the angle deviation is defined as A@ = 2tan~1(D/2R). Then, the transverse

coherence length is defined as follows with an assumption that (1/2)(D/2R)? « 1.

_ Acos(A8/2) A A R2+(D/2)2~/1R
t™  2sinA®  4sin(A6/2) 2D 2D

(1.79)

When using a pixelated detector for measurement, two types of coherence give
different effects to measured diffraction patterns. For the longitudinal coherence, a spectral
deviation leads to a deviation of the momentum transfer for each detector pixel, giving the

following relation.

50 = 2mmp 2rmp  2Zmmp AL _ mmp
C="7 A+AMDz  z 2A+A)) z§

(1.80)

, where m is a positive integer smaller than N /2. Thus, when the deviation, §Q.x =
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nNp/2z&;, is smaller than the half of the sampling, dQ/2 = mp/Az, giving & > NA/2, this
effect can be safely ignored as the error is within 1 pixel. Meanwhile, the influence of the

transverse coherence is usually described by the Gaussian Schell model defined as follows [31].

w(Ar) = o182/ (20,)° (1.81)

, where Ar is a transverse displacement vector and g, is a transverse coherence length in the
root mean square value. This model is applied to the 2D real-space density distribution, p, as

follows.

I'(@) = IFIAC (M3u(an]| (182)
= |7 [t c@etor/eon)|

, where AC represents the autocorrelation, which can be calculated by AC{f(r)} =
FHIF{f()}?], I and I' is diffraction patterns before and after applying the model,

respectively. |Ar| is given by the radial distance from the center.

Coherence is an important keyword for diffraction imaging. As the measurement is
conducted by counting the scattered photons to the certain solid angle elements, only the
intensity of the signals can be obtained. Although the Fourier transform is a linear operation,
the measured signals are the absolute square of the Fourier transform of real-space information,
thereby lost the linearity. Thus, it is important to use the probe beam with a well-defined single-

mode wavefront for high-resolution imaging.

1.10. Plane-wave coherent diffraction imaging (CDI) and ptychography

After the experimental verification of plane-wave CDI for a nonperiodic object by Miao ef al.
in 1999, CDI has been widely used for high-resolution imaging surpassing the performance of
optical microscopy by using X-ray and electron beams [5]. Although conventional microscopy
also performed well with X-ray and electron beams, CDI does not need image-forming lenses,
thereby its resolution is not restricted by optical performance and intrinsic aberrations of the

lens system. In addition, as the ideal resolution of the X-ray lenses, such as zone plates or
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multilayer Laue lenses, is determined as 1.22Ary by the Rayleigh criterion, where Ary is the
minimum width of grating components, the technical limitation of nanofabrication strongly
hinders the resolution below 10 nm, and this problem becomes severe for hard X-rays, which
demand an extremely high aspect ratio process [27,32]. Note that the diffractive optics is

typically used as a refractive index of materials is very close to 1 in the X-ray regime.

Detector

Extended

Aperture sample
Sox

- . Sample

Focusing
optics

Aperture

Figure 1.10 - Schematic diagram of plane-wave CDI (left) and ptychography (right). Adapted
from Ref. [7], Springer Nature Limited.

Based on the conventional plane-wave CDI, there are many variants including Fresnel
CDI, reflection CDI, Bragg CDI, holographic CDI, ptychography, and Fourier ptychography
[7]. Here, two representative types, plane-wave CDI and ptychography, would be covered.
Plane-wave CDI assumes the plane-wave incidence, which gives the uniform wavefront across

an object, assigning a constant probe field as follows.
z(Q) = Flu(r)v(r)] = Flu(r)] (1.83)

, where z, u, and v are functions corresponding to far-field diffraction, object, and probe,
respectively. Even if the incident beam is not a well-defined plane wave, the wavefront
deviation across the object is negligible when the object size is much smaller than the beam
size. Under this condition, u can be simply obtained by the inverse Fourier transform of z,
and phase retrieval, which reconstructs the phase-preserved diffraction function, z, can be
numerically accomplished by iterative algorithms [4]. However, the object must be localized
and have positive real values for the uniqueness of a solution in practice [33]. If the object
contains negative real or complex values, positions with nonzero values should be precisely
given for the uniqueness. Detailed discussion about phase retrieval would be presented in
Chapter 2.

-8 -



Meanwhile, ptychography is first proposed by Hoppe in 1969 to solve the phase
problem for electron diffractions from crystalline samples [34]. The word ptychography is
derived from the Greek words ptycho and graphein, meaning to fold and to write, respectively.
Ptychography does not assume plane-wave incidence; instead, it adopts a 2D scan with partial

overlaps across the object as follows.
z;(Q) = Flu(m)v(r — ;)] (1.84)

, where i is an index of each scan position. In early days, phase retrieval for ptychography is
achieved by noniterative methods like Wigner-distribution decomposition [35]. Nowadays,
modern ptychography adopts iterative phase retrieval methods, like as plane-wave CDI, and its
first experimental demonstration was achieved by Rodenburg et al. in 2007 [36]. After the
successful demonstration, ptychography has been widely used to capture images of both object
and probe in nanoscale resolution [37]. Phase retrieval of ptychography is like that of plane-
wave CDI, but both object and probe are simultaneously updated as follows [38,39].

v (r=r)P(r)

u(r) _niuwr+r)y(r+ry)
IEICEE O [

O =TS G + P (1:85)

, where ; is an exit wave function defined as y; = u(r)v(r —r;) . Unlike CDI,

ptychography does not require real-valued functions for both object and probe.

Besides such details, definitions of oversampling ratios, which are important factors in
a possibility of phase retrieval, are fundamentally different for CDI and ptychography. In a case
of CDI, the oversampling ratio along each dimension is simply defined as a ratio of a window
size with respect to an object width [40]. However, as ptychography employs a probe scanning
across the extended object, additional parameters are added to the oversampling ratio [41]. Note

that object and probe are assumed to have rectangular shapes for the sake of simplicity.

Ocpr,i
Optycho,i = 1— Cli (1.86)

, where i is an index of each dimension and ¢; is a ratio of an overlapped length of a scanning
probe with respect to the probe width along each dimension. Here, ocp;; uses the probe width

instead of the object width for a calculation of 0ptycho,; as an illumination of the extended

-29-



object by the probe is effectively the object at each scan point of ptychographic measurements.
Thus, the oversampling ratio along each dimension is determined by a ratio of the window size
with respect to a step size for the scanning probe, being more conveniently adjustable compared

to CDI.

Both plane-wave CDI and ptychography have advantages and disadvantages on
different circumstances. Plane-wave CDI enables imaging from a sing-shot measurement,
facilitating time-resolved studies. In addition, as diffraction patterns are invariant for
translational vibration if the object is within the incident beam, it provides the maximal
resolving power. However, it only handles isolated objects and has difficulty managing
complex-valued objects. Otherwise, ptychography enables imaging of a complex-valued
extended object, facilitating imaging of various materials without the constraints of plane-wave
CDI, such as size and resonant behaviors like magnetic signals. In addition, it is possible to
obtain a wavefront image of the incident beam, thereby it can be utilized for beam diagnosis.
However, time-resolved imaging is not possible, and phase retrieval is computationally more
expensive. It also requires a dedicated experimental setup for a stable 2D scan across the object.

Thus, it is important to choose the appropriate method in consideration of target systems.

2. Phase retrieval

2.1. Introduction

The phase problem is a well-known problem in crystallography, diffraction, astronomy, and
remote sensing [42]. As only the intensity, which is proportional to the number of photons, can
be measured by detectors, phase information is lost, and this is called the phase problem. In a
typical case, where a measured signal is the Fourier transform of a certain illumination or
density function related to a target system, the phase problem hinders the inverse transform of
the Fourier transform to obtain real-space information of the target system and requires
additional procedures to recover the lost phase of the measured signals. This process is called

phase retrieval, and iterative algorithms have been suggested for the phase recovery [4].

The first widely accepted phase retrieval algorithm was proposed by Gerchberg and
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Saxton in 1971 [3]. The Gerchberg—Saxton algorithm iteratively projects amplitude
components of both real- and Fourier-space variables onto measured ones; therefore, it requires
two-intensity measurement, which investigates not only diffraction pattern but also density of
an object. However, considering the purpose of diffraction imaging, the object density cannot
be given, and Fienup proposed two algorithms, error reduction (ER) and input-output, in 1978
by using a finite support with positive real constraint instead of the object density for the real-
space projections [43]. Then, Bates proposed the oversampling method in 1982, showing that
the phase problem is uniquely solvable for a positive real-valued object more than one
dimension when the spatial sampling is more than 2 along each dimension [44]. He also claimed
that the uniqueness for the object having negative real or complex values is only valid for the
most compact object corresponding to the Fourier intensity [45]. In this regard, Fienup showed
some examples for successful reconstructions of complex-valued objects with tight supports by
numerical experiments [46]. In addition, Miao et al. showed that the successful reconstruction
of complex-valued objects can be achieved with loose real-space supports and positivity
constraints on both real and imaginary components by numerical experiments [42]. They also
showed that the oversampling ratios of 2.60 and 2.57 are enough for 2D and 3D, respectively,
instead of 2 along each dimension. Based on these efforts, the phase problem becomes no longer
a difficult problem to solve. In this chapter, brief introduction of representative iterative
projection algorithms followed by advanced approaches by means of the convex optimization

would be covered.

2.2. Iterative projection algorithms

The problem, which is aimed to be solved by phase retrieval, is defined as follows. Note that
the variables, u and z, are in a form of a matrix, strictly a column vector, for the sake of

simplicity.

: - -1, _
ulzrggxm[ﬂg(u) + 97(2)], subjecttoF lz=u 2.1)

, where J5 and J; are indicator functions for real-space support and Fourier-space amplitude

constraints, § and T, respectively. Each constraint is a set of matrices defined as follows.
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S={ueR"VMy, ifieSAu; =0; u; =0, otherwise} (2.2)
T ={z € CN*M||z| = b}
, where i is a position index of the matrix elements, S 1is a set of position indices, at which an

object is located, and b is the Fourier amplitude defined as b = v/I. The indicator functions
can be substituted by arbitrary convex functions of which the minima are corresponding to the

constraints.

The simplest way to solve Eq. (2.1) is iteratively project onto both constraints as

follows.
uU* = proj, [F 1 proj {FuP}]| (2.3)

, Where j is an index of iterations and projs is a projection operator, producing the closest

variable from the input that gives the minimum value of the target function, f. This algorithm
is called the error-reduction (ER), which is virtually equivalent with the Gerchberg—Saxton
algorithm [43]. The projection operators in Eq. (2.3) can be operated as follows.
. u;, ifies
(pr0]75u)i - {OL otherwise 24)

proj;,.z = b © e'ar82

Considering a nonlinear system with an input, u®@, and output, which is defined as
i) = F-1 projg,. [73 u(j)], an additional gradient outside the object support can be given as

follows based on the nonlinear feedback control theory [47].
uU* = proj,, a¥) + projy. [u®) — pat] (2.5)

,where [ is areal parameter, which is typically given as 0.9, and S’ is the complement of the

real-space support constraint defined as follows.
SC={ueRVM|y;, ifieS°vu; <0; u; =0, otherwise} (2.6)

This algorithm is called the hybrid input-output (HIO) [4]. HIO is typically used with several

iterations of ER.

Some iterative projection algorithms are generalized by an algorithm called the
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difference map (DM) defined as follows [47,48]. Note that the Fourier-space projection

. _ . . .(real .
operator for a real-space matrix, F~1 projy,. F, is expressed as pr01§T ) for convenience.

real)

—B projI[(1 + y,) projy, u® — y,u0]

, where y, and y, are real parameters. It is recommended touse y, = —1/8 and y, = 1/p.

If the positivity constraint is not enforced, DM is equivalent with HIO when y; = 1/ and
Ye=-—1

The last algorithm to be introduced is the relaxed averaged alternating reflection

(RAAR) defined as below [47,49].
G+1) L (real) | (j) ) (real)  (j)
u = Eﬂ [reﬂgs{reﬂgT uY } +uY ] +(1- ﬂ)prole e (2.8)

, where refl; = 2proj; — . RAAR utilizes reflection operators, which make the variable
moving exactly twice of that from the projection operator, being designed for stable and fast

phase retrieval. If the positivity constraint is not enforced, RAAR coincides with HIO when
B =1

Using these kinds of iterative projection algorithms, phase retrieval is conducted from

YVXM | oiving an initial object, u(® = F|[beiPrand|, and

a random phase, @ranq € [0,27
multiple runs, of which each run starts from a randomly generated initial object, called seeds,
are parallelly executed to verify stability and convergence of the reconstruction. After enough
iterations, the best u is typically selected based on R-factor, which is a normalized mean
absolute error of the Fourier amplitude, defined as follows [50]. Note that mean squared error

and root mean squared error of the Fourier amplitude are also used occasionally.

|.‘Fu(1)|l — bl|
2 b;

RY = Z (2.9)

An increase of the noise in a measured diffraction pattern hinders the phase recovery

and the reconstructed image becomes sensitive to the phase retrieval conditions including object
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support and initial objects. Thus, determination of such conditions is important when dealing
with noisy diffraction signals, and various approaches are suggested for the successful

reconstruction. In this regard, three add-on methods would be introduced representatively.

The first method is the shrink-wrap algorithm [51]. Although a tight boundary of the
object cannot be obtained from the measured diffraction pattern without any prior knowledges,
autocorrelation of the object can be acquired by the inverse Fourier transform of the Fourier
intensity if a sufficient portion of the zeroth speckle is not occluded by a beam stop, providing
an upper boundary of the object. In this manner, the shrink-wrap algorithm sets the initial
support by a contour at a certain intensity level of the autocorrelation. Then, while the object is
gradually forming its shape along with the iterations of the phase retrieval algorithm, it updates
the support by thresholding the temporary object after the Gaussian convolution for every few
iterations, and the Gaussian kernel is also updated by slowly reducing its width. Note that the
algorithm is failed when the real-space noise becomes larger than the threshold for updating the

support.

The second method is the guided hybrid input-output (GHIO) [52]. Instead of searching
a tight object support, GHIO repeats the whole HIO iterations with assigning the initial objects
based on results of the previous generation defined as follows.

(0) _ N N
Ugrim = ug,best © Ugm (2.10)

, where g and m stand for the indices of generations and seeds, respectively, and u”
denotes the final object after several iterations of the following additional operation on the result

of each seed with the minimum R-factors.
uYU* = proj;, @ + projs . [aii®] (2.11)

, where « is a real parameter, linearly decreasing from 1 to 0. For the zeroth generation,
assuming real-valued objects, the initial phase is generated randomly, but the phase value at
—Q is assigned to be conjugated with the value at Q. Consequently, GHIO guides the initial
objects from the previous generations, enforcing HIO to search near the previous minimum

points in the error landscape for global minima.
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The last method to be introduced is the oversampling smoothness (OSS) [53]. OSS
additionally applies the Gaussian function in the Fourier space after each iteration of HIO to

reduce an effect of the noise as follows.

(+1) e
u,(j+1) _ u-] , ifi €S

i ' 2.12
i (g:-l[W O] Tu(“l)])i, otherwise (12

, where W is a normalized Gaussian kernel defined as W(Q) = e=Q%/2¢% ith a linearly
decreasing a typically in 10 steps from 2NdQ to (2N/10)dQ during iterations. This
operation gradually suppresses high-Q signals, which show lower signal-to-noise ratios (SNRs)
compared to low- Q signals, offering noise-robust reconstructions. These methods help

bypassing strong local minima by the noises to obtain optimal solutions.

2.3. Resolution estimation for phase retrieval

Resolution estimation of reconstructed real-space images after phase retrieval is conducted
based on the convergence of individual reconstructions from initial random phases. In this
regard, phase retrieval transfer function (PRTF), which is a normalized mean Fourier amplitude
of all reconstructed images from initial random phases, is generally used and defined as follows
[25,54].

|Ful

PRTF = i (2.13)

, where Fu denotes an element-wise average of Fu over all images. The typical threshold
criteria on the radial distribution of PRTF are 0.5 and 1/e [25,55]. Based on these criteria,
image resolution can be simply obtained by 2m/Q.y: with the cut-off momentum transfer,
Qcut, for the full-period resolution. However, as PRTF and its criteria are not strictly defined,

they often cause discussion [56].

In case of the resolution estimation for scanning methods like angle scans for
tomography, Fourier shell correlation (FSC) is generally used [57]. Note that Fourier ring

correlation (FRC) is identical with FSC but for 2D images. FSC calculates radial correlations
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in the Fourier space defined as follows.

Fuy © (Fup)”
|Fuql © |Fusl

FSCA,B = (2.14)

,where A and B denote two independent datasets splitting from whole measured data and u,
and up are reconstruction results from each dataset. These datasets are usually assigned by
even- and odd-order data from ordered scans. Similarly, FSC also uses threshold criteria on
their radial distribution, and typical criteria for the resolution estimation are a constant threshold

of 1/7 and 0.5-bit information threshold curve [57,58]. The constant threshold of 1/7 is

from /2FSC/(1 + FSC) = 0.5, considering SNR when signal and noise are uncorrelated [58].
Meanwhile, the radial distribution of FSC approximately has the following relation with SNR

when Fu, and Fup share same signals with different noises of similar SNRs [57].

SNR(Q,) + 2¢/SNR(Q))/v1yoxe1 (@) + 1/y/1yoxe1 (@)
SNR(Q)) + 2y/SNR(Q;) /y/Nyoxe1 (@) + 1

FSC(Q;) ~ (2.15)

, where SNR(Q;) and ny.xe(Q;) are SNR and voxel number of the data in a spherical shell
with a radius of Q;. Note that the thickness of the shell is mostly assigned the Fourier-space
sampling, dQ. Thus, considering that the half dataset gives SNR half of that for the full dataset,
the 0.5-bit information threshold curve is defined as follows for 0.5 bit=log,(1 +

SNRgy;) = SNR = (v/2 — 1)/2 with the SNR for the full dataset, SNRgy,.

(2= 072+ (202 1) 4 1) @)
(\/E + 1)/2 + 2(\/E - 1)/\/ nvoxel(Qi)

To5-5it(Qi) = (2.16)

Based on these criteria, the resolution can be estimated by the cut-off momentum transfer like

as PRTF.

2.4. Lagrange dual problem

As the phase problem is an optimization problem, it would have duality and equivalent dual
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problem can be constructed [59]. Starting from the primal problem in Eq. (2.1), corresponding

Lagrangian is simply defined as follows.
L(u,z,y) = Is(u) + Ir(z) + Re(y, F 'z — u) (2.17)

, where y is a Lagrange multiplier and (-,-) is the Hermitian inner product. Then, the

Lagrange dual function is defined as follows.

max =~ min L(u,z,7v) (2.18)

yeCNXM g zeCNX

This problem is called as the saddle point problem. The equality condition of the primal problem,

F~1z = u, becomes unconstrained in the Lagrange dual problem.

When the primal problem is convex, Karush—Kuhn—Tucker (KKT) conditions are the
sufficient conditions of primal and dual optimal points with zero duality gap. Although KKT
conditions are necessary conditions for optimal solutions, they become sufficient and necessary
conditions if the problems hold strong duality. For the general nonlinear optimization problem,

KKT conditions are defined as follows.

0€edf(x*)+ z Uk 0gi (x™) + Z v;0h;(x*) (Stationary)
k 1
gr(x*) <0, forVk

n(x*) =0, for Vvl (Primal feasibility) (2.19)
l — U

U, =0, forvk (Dual feasibility)

Up9r(x*) =0, forVk (Complementary slackness)

,where x* isalocal optimumand y; and v; are KKT multipliers. Here, the general problem

is defined as follows.
min f(x), subjectto g,(x) <0,h(x) =0 (2.20)
XEX

, where f is an objective function, X is a convex subset of RV, and g, and h; are
inequality and equality constraint functions, respectively. All functions are RN — R. KKT
approach is a generalized form of the method of Lagrange multipliers, allowing inequality
constraints. For the phase problem that does not have inequality constraints, the stationary

condition gives the following conditions.
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0 € 9,9s(u*) — Re[d,(y, u)(u*)] = 3,95s(u*) — Re[y]
0 € 8,77 (z*) + Re[0(y, F'z)(z")] = 9,97(z") + Re[d,(Fy, z)(z")] (2.21)
= 0,97(z*) + Re[Fy]
Unlike J5, Js is safely treated as a lower semi-continuous extended real-valued convex
function. Thus, it allows substitution with its Legendre—Fenchel transform as follows.
Re[y] € 0,75 (u")

© Re(y,u) — Is(w) = Re(y,v) — Is(v), 3Fuforvv e CV*M
& Re(y,u) —Js(w) = sup Re(y,v)—T5(v) (2.22)
M

vECNX
& Js(u) = —I5(y) + Re(y, u)
, where Js(u) is a Legendre—Fenchel transform of IJs(u) and defined as Js(y) =

sup Re(y,v) —IJ5(v) or equivalently Ji(y) = — E}IfMgg(U) — Re(y,v) . Using this
veChx

veCNxM

conversion, the final expression of the dual problem is defined as follows.

max  min [—7i(y) + I7(2) + Re(y, F~1z)] (2.23)

yECNXM ZE(ENXM

2.5. Primal-dual algorithms

Primal-dual algorithms are widely used for convex optimization in imaging science [60]. Here,
two representative algorithms, alternating direction method of multipliers (ADMM) and primal-
dual hybrid gradient (PDHG), would be introduced for the case of the phase problem [61,62].
ADMM utilizes an augmented Lagrangian defined as follows [59,61].

L,(u,z,y) =Is) + Ir(2) + Re(y, F 'z —u) + 12_) |1F~"z — ull3 (2.24)

, where p is a positive real parameter and || - ||, is L?-norm. Then, the algorithm is defined

as follows.

u(j+1) = argmin Lp(u’z(])’y(]))
ueRNxM

zeCNxM
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ADMM can be written in a scaled form that is often more convenient. The last two terms in the

augmented Lagrangian can be expressed as follows.

2

——IIYIlz (2.26)

1
Re(y, 771z =) + D171z — uly = 2|12 - u+ —y
2 2 p-ll,

P - P
= LIF 1z -+ 313 - S11713
, where ¥ is a scaled dual variable defined as ¥ = (1/p)y. Thus, Eq. (2.25) can be simplified
as follows.

uU+D = argmin [ﬂs(u) +2 ||.‘F_1Z(j) —u+ }7(j)||2]

ueRN*xM

zU*D = argmin [JT(Z) += ||7-" z—uUtD + 50| ] (2.27)
zeCNxM

yU+D = U F-170+D _ 3, G+1)

The first two step can be expressed by a proximal operator. The proximal operator is generally

defined as follows.
prox;(v) = argmln [f(x) +— IIx - vllz] (2.28)

Using this operator, Eq. (2.27) becomes as follows.

u(j+1) = proxgs,l/p [j:'_lz(]) + y(})]
LU+1) — ProXs, 1/, [g:{u(jﬂ) _ }7(1')}] (2.29)
FUHD = §0U) 4 F-170+D) _ 3G+

Note that ADMM can be interpreted as an application of Douglas—Rachford splitting.

Meanwhile, PDHG starts from the saddle point problem that is described for the case
of the phase problem in the previous section [62]. Considering the saddle point problem

presented in Eq. (2.23), PDHG is defined as follows.

y(j+1) = proxjg's[y(j) + S:]:'_lf(l)]
LG+ — prong,t[Z(j) _ tg:y(1'+1)] (2.30)
Z(j‘"l) = Z(j+1) + 0(2(}+1) j— Z(]))
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, where Z is a temporal primal variable initially set as (® = z(® and s, t, and 6 are real
parameters satisfying s,t > 0 and 6 € [0,1]. Note that PDHG can also be interpreted by
Douglas—Rachford splitting, and ADMM with a preconditioner defined as M = (1/s)I —
tF~1F with 0 < st <1 is equivalent with PDHG. As J; can be treated as a uniformly
convex function of which the gradient is Lipschitz continuous, the convergence of the algorithm

can be accelerated by modifying the parameters in Eq. (2.30) as follows.

Z(j‘l'l) = proxg%tj[z(j) —_ t]Ty(]‘l'l)]

(2.31)
0, =1/ |1+ 2yt;,5;41 =5;/6;, 41 = 0jt;

FUHD = Z0+D) 4 g, (20D — £O))
, where y is a positive real parameter for updating the parameters and s and t are initially

assigned values satisfying sgt, < 1. Both algorithms adopt proximal terms, thereby offer

improved convergence and better handling of non-smooth objective functions.

2.6.  Generalized proximal smoothing

Generalized proximal smoothing (GPS) is a phase retrieval algorithm proposed by Pham et al.
in 2019, providing superior performance especially with noisy diffraction patterns [63]. GPS

uses generalized Moreau—Yosida regularization defined as follows.

1
900 = inf |g(@) +5 v - ulfy-] (2:32)

, where g is a lower semi-continuous extended real-valued function, M is a Hermitian
positive-definite matrix satisfying M € CV, and X is a closed subset of CV. Using this
regularization, the objective functions can be relaxed with certain Hermitian positive-definite

matrices, G and H, modifying the saddle point problem in Eq. (2.23) as follows.

max  min [~ ;) + Jr 4 (2) + Re(y, F1z)] (2.33)

yECNXM zeCNxXM
As Js ¢ 1s still a lower semi-continuous extended real-valued convex function, it can
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be expressed as follows.

1 1
Tse) = inf, 55 + 5 Ilv = yiE-s] = (3 D51 1) )

(2.34)

, where [] is an infimal convolution. Considering the Legendre—Fenchel transform of the

infimal convolution, Jg ; is defined as follows.

1 * 1 *
T = (35 D51 2s) 02 =50+ (31 1E-)
The first term 1s defined as follows.

I5(y) = sup [Re(y,v)—TIs(v)] = sup Re(y, v) = I5-(y)

veCNxM

, where §* is a set of matrices defined as follows.
S*={yec"*M|y,, ifieSARe[y;] <0; y;=0, otherwise}

The second term is defined as follows.

(2.35)

(2.36)

(2.37)

1 * 1 1
(G1-12) 0= sup [Re(y,vy =2 lwl3-i| = sup |Rety,v) 5 w,67v)| (238)

veECNX veCNX

The first derivative condition for the supremum gives the following relation.
1
9, [Re(y, V) — E(v, G‘lv)] =Rely— G 'v]=0
Substituting by v = Gy, Eq. (2.38) becomes as follows.

1 1 1
sup_[Re(y, 6y) =5 (67,67Gy)]| = Ivllz = 5 IIE = 5 Iyl

veECN*XM

Finally, J5, becomes as follows.

1
560 =350 +5 vl

(2.39)

(2.40)

(2.41)

GPS is equivalent with PDHG for the abovementioned relaxed indicator functions,

giving the following algorithm of which the order is slightly modified from Eq. (2.30). Note
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that GPS sets 8 = 1.

Z(j+1) ot proij'H't[Z(j) — tg:'y(])]

. . . . 2.42
yU*D = proxy: [y + sF-1{220+D — z0)] (242)

GPS relaxes Jry by simply assigning the constant to the matrix as H = o1, giving the least

square terms as follows.

1 1
o= inf, [.’]T(v) +=lv - z||§1/a)] inf = [[v Il (2.43)

1 _ 2 1 , 2
= —|lprojs, [z] — ||, = o~ [[b © e'*5* — 2|, = %nb —1zI1I3

Thus, the proximal operator in the first step of Eq. (2.42) can be conducted as follows.

proxy, [z] = argmin [JTJ(U) +— ||v - zllz] (2.44)
veCN*M
— : _ b_ 2 _ _ 2]
argmin [20 16 = 1vlliz + 7 ||v z||
— b targz 4
o+t Oe o+ tZ

On the other hand, the proximal operator in the second step of Eq. (2.42) can be calculated as

follows.
prox,; ..y = argmin [15-) + 3 Iyl + 5o — yII (245)
veCN*M
= argmin 5 Y113 + 51w = 717
= (H + sG) projs,.y

GPS provides two variants up to the choice of the matrix, G. One variant is GPS-R that
uses the matrix defined as G = yDTD, where y is a positive real parameter satisfying y <« 1
and D is a discrete gradient operator. As (I + syDTD)™! is roughly a kind of the Laplace
smoothing, it can be expressed as a convolution of the heat kernel defined as G,(r) =
(1/4mt)e ""/4t Using the Fourier transform of G,(r) is defined as W,(Q) = e~t?*, Egq.

(2.45) becomes as follows.

-4) -



(I + syD™D)*proj; . [y] ~ Gy, * projy_.[y] = F-L[W,, © Flprojs.y}]  (2.46)

Reminding the Gaussian kernel of OSS defined as W(Q) = e~?*/2¢*  the choice of ¥ is
directly imported from OSS as W, = W, thereby y is definedas y = 1/ 2a? with a and its

updating policy from OSS. Thus, W, can be obtained by W, (Q) = e=sQ*/2a”

Another variant is GPS-F, and it uses the matrix defined as G = ydiag(r?), where r
is a distance with respect to the center and diag denotes a diagonal matrix operator. Using this

matrix, Eq. (2.45) becomes as follows.

. I : 1 .
[1 + sydiag(r?)]~*proj;_.[y] = diag (m) © projy,. [y] (2.47)

~ diag(e™""") O projs_.[y]
= Wsy/4n2 O] pI'O]'gS* [¥]

Here, as the variables are discrete 2D data and can be mapped by integer coordinates, Q = r

can be simply converted by dividing 2 to each @, thereby giving diag(e‘syrz) =Wy an2-

The choice of y is also directly imported from OSS like as GPS-R and W 2 can be

sy/4m

obtained by Wy, /4,2 = o—sQ?/8n%a®

The major difference of GPS-R and GPS-F is the space where Gaussian kernels are
convolved. As their names state, GPS-R convolves the Gaussian kernel in the real space, while
GPS-F convolves the kernel in the Fourier space. These variants should be properly chosen for
better image reconstruction. In summary, GPS is equivalent with PDHG for the indicator
functions relaxed by the generalized Moreau—Yosida regularization. It provides robust
performance especially for data with strong noises, facilitating phase retrieval of photon-limited
single-shot diffraction patterns that is essential for time-resolved imaging. In this regard, GPS
has been played an important role in time-resolved CDI, which enables tracing ultrafast

dynamics of various systems in nanoscale resolution [10,11].

3. Vortex beam
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3.1. Introduction

Vortex beams, of which wavefronts have helical structures expressed by the Laguerre—Gaussian
(LG) modes, have attracted research interests across multidisciplinary science due to their
unique characteristics. In 1992, Allen et al. noticed that LG laser modes, of which wavefronts
have an azimuthal dependence of e?®, where [ is an azimuthal mode index or topological
charge, inhere an orbital angular momentum (OAM) of [h [64]. He et al. observed transfer of
OAM and subsequent rotations by trapped absorptive particles using LG beams in 1995
thereafter [65]. Similarly, Simpson et al. controlled both spin angular momentum (SAM) and
OAM of the beam and observed mechanical rotations of the particles in 1997 [66]. After two
decades, total angular momentum transfer to the valence electron of a trapped ion was
experimentally observed by controlling both SAM and OAM of incident light, verifying the
selection rule [67]. Besides such findings, applications of vortex beams have been actively

developed in various fields for few decades [68].

The first observation of an X-ray vortex beam was achieved by Peele ef al. in 2002
using a spiral phase plate [69]. However, as diffractive optical elements (DOEs) are known to
be more efficient in the X-ray regime and have already been studied with computer-generated
holograms, generation of X-ray vortex beams was also reported using binary DOEs including
fork grating and spiral zone plate (SZP) [70,71]. In the X-ray imaging field, as such DOEs offer
the radial Hilbert transform, an edge enhancement of images can be achieved methodologically
by using SZPs [72,73]. Moreover, the resolution improvements were also reported for
ptychography using vortex beams in the extreme ultraviolet regime [74,75]. These advantages

have stimulated the use of SZPs for various X-ray imaging methods.

Another effect by the vortex beam is helical dichroism, which is sometimes referred as
helicoidal or vortex dichroism. Unlike linear or circular dichroism, helical dichroism is a
dichroism depend on topological charges of incident vortex beams not their polarization states,
and it is expected to provide enhanced sensitivities to quadrupolar transitions and chirality of
materials [76]. Recently, helical dichroism has been reported in various chiral systems such as
chiral plasmonic nanostructures, enantiomers, magnetic vortices, and antiferromagnetic 7Z2

topological defects [77-80]. OAM has higher degree of freedom on its value compared to SAM,
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which is limited to +h corresponding to left and right circular polarization. In addition, though
there have yet been only a few reports of helical dichroism in X-ray regime, strong helical
dichroism has been theoretically predicted, thereby having great potentials [81-84]. In this
chapter, light-matter interaction by vortex beam and subsequent helical dichroism would be

introduced. Brief explanation on SZPs would also be given.

3.2.  Vector potential of vortex beam

A vector potential of the vortex beam is described by LG modes, and it is crucial to understand
the light-matter interaction by the vortex beam. From the Helmholtz equation with paraxial

approximation as in Eq. (1.8), the beam can be described as follows in cylindrical coordinates

[20,64,85].
Il
3 2p!  w, (V2r 2w il 2r?
LGy (r, ¢,2) = /n(p+|l|)! o ( v ) e Ly | —3 (3.1)

X eil(,beikrzz/z(zz+z£)e—i(2p+|l|+1) tan~1(z/zR)

,where p and [ are radial and azimuthal mode indices for the associated Laguerre polynomial,
Llél, respectively, z is a coordinate from the beam center, zp is the Rayleigh range given by
zg = w3z /A, and w is a radius of the Gaussian beam at 1/e? of its intensity defined as

w(z) = wyy/1+ 2z2/z% with a radius of the beam waist, w,. Note that (2p + |I| +

1)tan"1(z/zgz) is the Gouy phase. For the sake of simplicity, the coefficient

\/ 2p!/m(p + |1])! would be ignored hereafter. Then, the vector potential of the vortex beam in

the Lorenz gauge is expressed as follows.
AM(r) = €,LG, (r)e*? (3.2)
, where &, denotes the polarization vector of a state, A.

When in-plane components of the wavevector is considered with a small angle of 6, =
tan~1(k, /k,) < 1 yet satisfying the paraxial approximation, the wavevector is defined as

follows.
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k =k, cospyé, +kysing,é, +k,é, (3.3)

,where k, and ¢, are in-plane coordinate and corresponding azimuthal angle perpendicular
to the propagating axis, z, respectively. Then, the vector potential can be expressed by Fourier-
space components as follows. Note that this relation assumes superposition of plane waves at

at z=0.
AL(r, b,z = 0) = f A2k, e3Y(k,)el*™ (3.4)

, where Y, is a Fourier component of the vector potential and can be obtained as follows.

1 )
Ypl(kJ_) = W_I dZTJ_ LGpl(T',¢,Z = O)E_Lkl‘rl (3.5)
[l 2
— 1 dz \/Erj_ —rJz_/ng|l| ZL ilgp ,—ik, 7, cos(p—opy)
T, e o | =% |e'®e
(2m)2 Wy W&
Il
e, () e ()] s eve
e — dr r e_TJ_/WOL —— f d¢) ell¢e_LkJ_rJ_ COS(¢_¢k)
2m)z), T\ w PAwé /),

As the integral term about the azimuthal angle, ¢, in Eq. (3.5) is analogous with the integral

representation of the Bessel function of the first kind, [, it can be expressed as follows.

21
dg ellPe~tkiricos(d=01) = 2 (—i)lelPk] (k7)) (3.6)
0

Here, (—i)" and J;(k,7.) in Eq. (3.6) satisfies (—i)~j_j (kyry) = i (=) (keyr) =
(=) Ueyry) for | < 0, thereby guaranteeing (—i)J,(ky1) = (=), (kyry) forall L.
Meanwhile, the associated Laguerre polynomial term is defined as follows.
2 p 2\ B
L (ZL) -y (1) (P + ”') (ﬁ) (3.7)
P A\wg B' \p—B)\w¢

=0

, Where () is the binomial coefficient. Then, Eq. (3.5) becomes as follows.
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il . ipr <& )8 I > 2p+|l+1
Yl = SN C (1; * 'ﬁ')(ﬁ) (38)

W,
g=o 0

f dr, Tfﬁﬂll“e_rf/wghu(kJ_TJ_)
0

Substituting by u = r2/wé, the integral term in Eq. (3.8) can be simplified by the special
identity between the associated Laguerre polynomial and the Bessel function of the first kind

as follows [86].

J dry Tfﬁ+|l|+1e_rf/w‘%]|l|(kﬂl)
0

2B+|U+2 .o 2,2

w ksw,
zo—j du ufl/zg=up, [ 5 [y L0
2 o 4

2B+|1l+2 2. 2\ /2 2.2
W0l gy w20} T (Riwo
2 4 B\ 4

(3.9

Using this result, Eq. (3.8) finally becomes as follows.

PN PPN L2 P 2,2
Y, (k,) = (=0v2) ws <kLW0> e~kiwd/4gildr Z(—Z)B <I;t|;|>L|él (kl:V()) (3.10)
B=0

a1 4

= vy (ke Pk
, where vy, (k) is aradial distribution of Yy,,.

When the polarization vector is not perpendicular to the wavevector, the divergence of
the vector potential does not vanish, and consequent nonzero scalar potential makes the Lorenz
gauge no longer more convenient than the Coulomb gauge. Using the small-angle
approximation, the wavevector is defined as follows.

k = ksin ) cos ¢y é, + ksin ) sing é, + kcos 6, &, (3.11)

~ kO cos ¢y &, + kO singy é, + ké,
The polarization vector is also defined as &, = (— A/ \/E) (éx + iAéy) with A =41
corresponding to left and right circular polarization that give SAM of +h, respectively [87].
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Then, the polarization vector associated with the wavevector is given as follows.

. 0 , 6 A
Erp = E_peMk sin? (—) + g,e~ Mk cos? =) + —sin 6, &, (3.12)
k 2

2/ 2
A . 0 . 0
- o () (s

. 6 . 0
+ {—iAe‘A¢k sin? (é‘) — iAe APk cos? (7")} é, +sin 6, éz]

A
= ——[(cos 0, cos ¢, — iAsin ¢, )é,

V2

+(cos ), sin ¢y, + iA cos ¢y )&, — sin O, &)
A e A : . . .
~ —E[(cos ¢r — iAsin ¢y )é, + (sin ¢y + iAcos Py )é), — erz]

= [ +ine,) — 0,8 = vy + 042,

Thus, using Eq. (1.13) and Eq. (3.4) substituted by Eq. (3.10), the vector potential in the

Coulomb gauge is defined as follows.

A .
AC(r) = f d’k, [SA + ﬁﬁk(cos ¢y + iAsin d)k)éz] Uy (ke Pk (3.13)

A . .
= f dzkl <£A + _ekeLAd)ké ) v l(kl)elld)k
V2 P
— f dzkl £k'Avpl(kl)ei(l+A)¢keikvr
The azimuthal term, e!+M®k_ has the integer coefficient of [ + A, which eventually indicates
the total angular momentum. Both vector potentials in the Lorenz and Coulomb gauges

obviously bring identical physical observables, thereby the gauge can be chosen for the

simplicity of calculation based on each situation.

3.3. Light-matter interaction with vortex beams and helical dichroism

When considering an absorption of a single photon characterized by k and A by an atom, the

matrix elements for the light-matter interaction are defined by the bra-ket notation with the
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interaction Hamiltonian as in Eq. (1.29). Here, the interaction Hamiltonian is given as follows.
Note that only leading terms, p- A and A - p, are considered. Note that the transversality

condition is assumed, giving p-A = A - p.
e
Hine = —%A(T, t)-p (3.14)
Then, the transition matrix is given as follows.
e
(f|Hintlg) = —%(fi M = 1|A - | g5 nea) (3.15)

Here, the vector potential is assumed to have the following formula at z = 0 with the

assumption of the dipole approximation, e%*? =~ 1.

I
2p! \2r 2 2r2\ .

A (r.¢,z=0) = g,a / e TA/wWE U [ 2| oté 3.16

pl( ¢Z ) A%k A ﬂ(p+|l|)!<W0) p WOZ ( )

For the sake of simplicity, the radial mode index is fixed by p = 0 and the Gaussian term is

ignored by the approximation, 72/wé < 1 - e THWe ~ 1, giving the following vector

/2 var\"
A(r,d) = gpagp W<W_0r> ell® (3.17)

As the spherical coordinate system is more convenient to describe electron transitions, it is

potential formula.

better to represent the vector potential in the spherical coordinates [81]. The spherical

harmonics having e?? term is given as follows.

. r oGO e+,
i (9 :§'¢) = 2 m e (318)

Then, the vector potential can be written as follows.
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_ , 211Y (2V2 -
Ai|[|(7’, ¢) = £Aak,A(-I_l)lllz (lell_il_ 1)| ( W0r> |l||l|(¢) (319)

r0 @, )
w)'

= eaqa(FDMUA

, where Aj; is the coefficient of the vector potential and r( ™ is a tensor defined as

rl(m) (r,¢) = J4n/(2m + 1) r™Y,,(¢). Substituting by r = R + r, where R is the position
of an atom and 7 is now the position from the center of an atom, the transition matrix becomes

as follows for | = +1.

e
_E(flAil(R +71)-plg) (3.20)
ed, @, W
~ imcw (fs aen — 1|ak,A(R +r )SA - p|g; mca)
\/nkA 1
=t——(fima — 1|(Ri11) + 73_51))8/\ -p|ginga — 1)
mc
e nkA 1 (1)
= i—VmCWO [(FIRG en - Plg) + (fIrYen - plo)]

Using the commutation relation as in Eq. (1.28), Eq. (3.20) becomes as follows.

L eyt e /ng a4y

how, [<f|R<”sA [Ho,711g) +(fIrYen - [HoTllg)] (3:21)

2L IRDey - CHor — rHIG) + (F1ren - Hor =TI
A
=+ [REflen - lg) + (fIrYen - Tlg)]

,where wg, is the frequency corresponding to the energy difference between the states, f and

g, defined as wsy = (Ef - Eg)/ h. Here, €, -r also can be expressed by the spherical

harmonics as follows.
A A ’ 3
EpAT = _\/_E(éx-l_lAéy) r = —ETGLA(p =—A 81 T}&l) (322)
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This term indicates SAM of Ah. Thus, Eq. (3.21) becomes as follows.

_ iAe ng Aa)ng'l
=]
CWq

REFIrPlg) + (1Y r1g)] (3.23)

, where A} is a new coefficient defined as /3/8m A;. Here, r(l) (1) can be calculated as

follows.

4n \’
rﬁ)nsl) ’ ryt. ’_Tyl = = CA+1r/&)1 (3.24)
/ r Y+2, otherwise

, where the coefficient c,4q is given by ¢ =1 and ¢4, =+/2/3. This term indicates the

total angular momentum of (A + 1)h. Then, the transition matrix finally becomes as follows.

_ i/\e1 / nk'A(A)ngll [
CWq

(f |Hinelg) = F RENUFINC1g) + caal Iy 19)] (3.25)

As the complex conjugate of RJ(_rll) gives R(l) Rfrll) , the absorption probability is derived

as follows.
L1 (R) (3.26)

2
Z|<f|Hmt|g>|2 ~ ZJ_nkA[R(l)Mf RPN
2A72

1 1 T 1 t
= wl Z ,/nk_A,nk_Aw}g[ RORE M ), — R e/ S,
.00

wf g

® t et i
+RY cpra ML M)+ cpprenn ]l M

, where the transition matrix is simply represented as ]V[T’:Ll =(f Irl(m)l g). The first term is
related to dipole transitions, the second and third term related to dipole—quadrupole
interferences, and the last term related to quadrupole transitions. When the cross terms vanish,

Eq. (3.26) is simplified as follows. Note that it is valid for systems with inversion symmetry.
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2212 2
I (R)~ﬂ 2 R_le |2+ 2 |]V[f |2 (3.27)
0V = 22 Mk A®@rg [ M1a Ca+1IMa a41 :
A

Integrating over all atomic positions, the absorption difference from the opposite sign of the
OAM can be obtained. When the anisotropy defined as 2 (I,; —I_4)/(I; + I_1) is nonzero,

this 1s called helical dichroism.

3.4. Linear response theory with vortex beams and helical dichroism

For more explicit calculation for physical measurements, the calculation can be
conducted based on the linear response theory. Considering a time-dependent perturbation, the

Hamiltonian is defined as follows [88].
H=Hy,+ H'(t) = Hy + F(t)H;n: (3.28)

, where F is the time-dependence of the perturbation. The perturbed ground state, ¥y, can be

expressed using the interaction picture as follows.

Yo=Y, + Z cr(t)e0rat g, (3.29)
f

, where wy, i1s the frequency corresponding to the energy difference between the states, g and
f, given by wrg = (Ef - Eg) /h. Here, ¢f is a time-dependent coefficient, which can be

obtained by the following formula.

G© =1 [ dt' (FHulgpF (et (330)

For the linear response of Hjy;, the time-dependent fluctuation at a specific time, t, can be

derived as follows.
t
D(t) = f dt' Kt —tHF(t") (3.31)
,where ¥ isthe nonlocal time-correlation function defined as follows. Note that K is defined

-52.-



only in the region where t' < t.

5t =) = =3 [(F Hine) |9 1 Hime () e 070" (332)
f

~(f I Hine ()1 9) {f | Hine (1) | ge @700
2 i !
- ﬁ'mZ[V |Hine()1g) (F | Hine ()| g)e 07011

As it is often more convenient to express the formula by its Fourier transform, the Fourier
transform of F is obtained by the following equation for the monochromatic beam with

F(t) = e '9rgt,

flw) = j dt F(t)elt = f dt e(©=010)t = 218 (w — wy,) (3.33)

— 00

Then, the perturbation can be expressed as follows.
’ 1 ” 1 —iwt iwt
H'(®) =o- | dof(@)5(Hnwe ™ + Hin-oe™) (334)

Here, +w in the subscript of Hj, indicates each operator associated with e*i®t to

distinguish each term. Thus, the perturbation in the frequency domain is derived as follows.
! 1 —iwt iwt
H (w) = E (Hint,we + Hint,—we ) (3-35)

Starting from Eq. (3.30), the coefficient, cf, can be obtained by the following equation with a

convergence factor, e't.

i t 1 r® . o
[ 1 ! , lwf ¢ Ft
cr(t) h}‘lil(l) f_m dt —an_oodw f(){fIH' (w)]|g)e'“rst e (3.36)
i t 0 | o
SR f_mdw §(w — wrg){fIH' (w)lg)e'@rat e™

1 t
i / o N | .
= —ﬁ%‘ll'%f dt [(leint,wlg)e i(w-wpg+il)t' 4 (leint,—w|g>el(w+wfg LF)t]

1 lim (leint,wlg) e—i(w—wfg+il“)t _ (fHint-w|9) ei(w+wfg—il“)t]

=2hreo w—wfg+iF w+wfg—il“
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Similarly, D can be expressed as follows.
1 . .
D(w) =5 [P(w)e™ ™t + P(—w)ei®?] (3.37)

Starting from Eq. (3.31), D can be obtained similarly by the following equation. Note that Im

is ignored during the calculation.

D() = lim f_w dt’ %f: dw %[ﬂ(w(t —tNf(w)e @ + (w - —w)]e™ (3.38)

1 : ‘ ! * ! —iwt’ !
= E%l_r}é B dt f_mdw [%, ¢t —t)6(w - a)fg)e Wt 4 (0 - —w)]e’™

t
= llim K' dt’ [e—iwfgte—i(w—wfg+il")t’ + (0) N _w)]

2T-0

i e—i(w+iF)t ei(w—iF)t
=—limX’ —

2T-0 [a) —wrg + i w4+ Wrg — iI‘]

, where X' is the time-independent term in K. Thus, the coefficient in the frequency domain

is given as follows.

(3.39)

a)—a)fg+i['

2 {f | Hine(19)" (| Hint ™) | 9)
Plw) = 7 Im
f
Using these relations, the absorption rate in the frequency domain is given by the following
formula. Note that the time-dependence is neglected.

S(w) = —%D(w) (3.40)
__ 1 [<f|Hm(r>|g>*<f|Hm(r'>|g> (f | Hine )19 {f | Hine )] 9)
= mz - :

f

B w—wfg+iI‘ a)+cufg—LI‘

This can be represented with the minimal-coupling interaction Hamiltonian defined as follows
[89].

e

Hoe == [ @1 [i() - -3 0@A®)] - AG) (3.4)

2mc?

, where j is the current density operator defined as j(r) = (—ieh/2mc) [t () (Vy)(r) —
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(VP)T(@)y(r)] and o is the charge density operator defined as o(r) = eyt (r)yY(r).
Similarly, A - A term would be also ignored hereafter. Using this representation, the absorption
ratio can be obtained by the following formula [84].

S(w) = _%ImZId3r fd?’r’ [jgf(r)'A*(r)jfg(?”') -A(r") (3.42)
f

W — wrg + ll}g

e A g () - AG)
w — (Ugf + ngf

For the spatial integral for r and 7', it is preferred to calculate under the Cartesian
coordinate system. In this regard, the associated Laguerre polynomial in LG modes can be

expanded by the Hermite polynomials as follows [90].

\/_T ’ +i ( 1) v
<W0> LL;I(W) g — 22p+”|p'22(+) ( > (3.43)

0 u=0v=
V2x V2
: H2u+|l|—u ( > HZp—2u+u ( y>
Wo Wo

, where H,, is the Hermite polynomial. For p =0 and [ = 41, it is given by the follow
V2r

Ay 5 <2_T22> etid — 1 [Hl <\/§x> <\/_y> (X/_x> H, (\/_)I)] (3.44)
Wy wg 2 Wy Wy Wy Wo

Then, the vector potential from Eq. (3.16) with e*? becomes as follows.

At = j;e-(x2+yz)/wg (1), (12) 045
s () ()|
Wy Wy

Meanwhile, when assuming the real wave functions, the use of the Gaussian-type orbital, of

equation.

which the wave function is defined as follows, might be considered [84].

Y;(r; R, a;,a;, by, ¢;) = N;(x — X)%(y — Y;)bi(z - Zi)cie_ailr_Rilz (3.46)
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, where N; is a normalization constant, «; is the Gaussian exponent, and a;, b;, and c; are
the integer superscripts for the Gaussian-type orbitals. As the multiplications and derivatives of
the Gaussian-type orbitals are the Gaussian-type orbitals, j,,, can be obtained by the

following equation.

ieh
fn () = =5 W T @) = W) O] = Y Ch (347)

4

,where C; is the coefficient for each wave function. Using these representations, the numerical

calculation of helical dichroism for the absorption by the atom can be easily accomplished.

3.5. Spiral zone plate (SZP)

The most straightforward method to generate a vortex beam is spatially assigning phase
retardance from 0 to 2m along the azimuthal direction to the wavefront of a plane-wave
incidence. However, it is hard to assign the phase delay of 2m in the X-ray regime and requires
a considerably thick optical component that gives rise to a significant attenuation of the incident
flux. In this regard, various DOEs have been proposed for the generation of the vortex beam,

and the most common DOE for such purpose is SZP.

Zone plates, or equivalently Fresnel zone plates, are a kind of DOEs which consist of
concentric circular diffraction gratings [27]. As their name suggests, each grating is called a
zone. The beam is diffracted by an alternating configuration of opaque and transparent zones,
providing the constructive interference at a focus. For the plane-wave incidence, the radii of the
zone boundaries should be given as follows by the constructive interference condition at the
focus, giving a path difference of 1/2 for each zone boundary. Note that the number of the

zone is counted for both opaque and transparent zones.

2 2

= (f+2) sn= |+ (%) ~yar (3.48)

,where f is the focal length of the zone plate and 7, is the radius of the nth zone. The second
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term, (n4/2)?, which corrects the spherical aberration, can be ignored as nd < f in the X-

ray regime. Then, the outermost zone width can be derived as follows.

ArN=rN—rN_1=\/N/1f—\/(N—1)/1f=\/N/1f 1— ’1—% z%\/%:%(SA‘))

, where N is the total number of the zones and the approximation is valid for sufficiently large

N.

Ary is important as it is directly related to the resolution, or similarly the spot size. The

resolution is defined as follows by the Rayleigh criterion with the small-angle approximation.

NA~ T o A g SO oo (3.50)
“F T oany T ORTNA T A '

, where NA is the numerical aperture. For the resolution along the z-axis, the intensity

distribution by a circular lens is defined as follows.

~ [(mNA?
sinc|{ —-—7z

Considering the first minima, z = + 21/NA?, and the Rayleigh criterion, the resolution along

2

1(z) « (3.51)

the z-axis can be derived as follows.

A 4(Ary)?
NAZ 2

dR,Z = (352)

The depth of focus is obtained by DOF = 2dy, ,. The zone plates have high diffraction orders,
specifically the odd orders, like as any other binary diffraction gratings. The parameters for the
mth order focus are given by the following equations.

L ~ M d,gm) ~ % 4™ ~ 4(Ary)? (3.53)

f(m): =~
m A m ' Rz m21

The zone plates can be expressed by the transmittance function defined as follows.
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T, (r) = P(r) exp (— ”Zf) (3.54)

, where P isthe magnitude function from an optical property of the materials. Here, the binary
structure of the zone plates can be obtained from the phase term in Eq. (3.54) as follows.

1, if(1-2mnr < —nr?/Af <2 -2m)m (3.55)
0, otherwise '

To(r) o< {

, where m is the index for the transparent zones. Note that he inversion of 0 and 1 in Eq.
(3.55) also provides the valid zone plates but reversing the transparent and opaque zones. Here,

the relation in Eq. (3.55) naturally gives the equivalent result in Eq. (3.48).

e

Figure 3.1 - Example images of on-axis (left) and off-axis (right) SZPs for [ = 1.

When the azimuthal phase term, e’?, is added to Eq. (3.54), the transmittance function of SZPs

can be easily obtained [91].

inr?

Af

T,(r) = P(r) exp (— + il¢>> (3.56)

Similarly, this gives the following binary relation.

1, if@-2m)yn<—nr?/Af +1¢p < (4—-2m)m

3.57
0, otherwise ( )

T;(r) « {

If there is a small off-axis angle, a < 1, Eq. (3.48) becomes as follows.
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2
(f + n_l) = (r,cos¢ — fsinacosp')? + (1, singp — f sinasing’)? + f2 cos? a (3.58)
12 — 21,f sina cos(¢p — ¢') + f% cos? a
~ 17 — 2 facos(gp — ') + f?

, where ¢’ is the azimuthal angle that defines the tilting plane with the principal axis for the
off-axis geometry. The additional term, —2r, far, cos(¢p — ¢'), corresponds to the phase
term of (2m/A)ar cos(¢p — ¢'), giving the following transmittance function.

inr?

Af

T;(r) = P(r) exp <— + ilp + z%ar cos(¢p — ¢’)> (3.59)

This is the general transmittance function of the zone plate reflecting both topological charge
and off-axis angle. Using this function, off-axis SZP patterns can be generated from half-
period zones like as Eq. (3.55), and they are fabricated with high-Z elements like Au and W
typically on Si-based membranes by lift-off or etching process. As Ary is directly involved in
optical performance of the zone plates, high-resolution nanofabrication facility is required for
nanoscale resolution, and the fabrication processes become much more difficult for the hard
X-rays because of substantially high aspect ratios, interrupting the resolution below 10 nm

[92,93].
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III. Development of Experimental Techniques for CDI
4. Multidistance CDI

4.1. Introduction

There are many functional materials with nanoscale structures, and these materials typically
have sizes up to a few microns for their practical usages in macroscopic circumstances including
physical adsorptions, catalytic reactions, ion transport, etc. Representatives for such materials
include mesoporous materials, which have pores with diameters typically in the range of 2—50
nm, and they have been spotlighted due to their great potentials in various fields, such as catalyst,
drug delivery, and energy storage, from their extremely high surface area to volume ratios [94—
96]. In addition, synthesis of mesoporous materials represents significant advancements, even
achieved nanoscale controls of their porous structures [97]. As structure and spatial distribution
of pores are directly related to the functionality of the mesoporous materials, it is important to
investigate their morphologies accurately and nondestructively. In this regard, CDI is a perfect
solution for a nondestructive inspection of mesoporous particles, fully covering complicated
nanoscale structures inside them. Although its competitor, the transmission electron microscopy,
has realized 3D tomography of nanoparticles in atomic resolution, the size of particles is
restricted by several tens of nanometers because of a low penetration power of an electron beam,

limiting its use with larger particles [98,99].

In the CDI scheme, where a plane-wave incidence is assumed across a sample, X-ray
diffraction patterns are invariant under translational movements of the sample, thereby CDI is
advantageous for high-resolution imaging, where a vibration is one of the main concerns. A
pixel resolution of CDI is defined by a wavelength of the incident beam and the maximum angle
covered by a 2D pixelated detector like as a numerical aperture in the optical microscopy.
Considering the limited size of the detector, the sample-to-detector distance (SDD) should be
shortened to increase the resolution. However, as a large portion of the incident flux would be
transmitted, the low-Q components near the center of the diffraction pattern would be buried
by the intense direct beam or a beam stop blocking such contribution from the detector. Such
signals, especially the zeroth speckle, represent the overall shape of the sample and losing this

information makes phase retrieval difficult [100,101]. As the divergence angle of the zeroth
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speckle is given by 1.22 1/d in terms of the Airy disk, where z is SDD and d is the sample
width, this problem becomes aggravated for larger particles. Several approaches have been
proposed to circumvent such problems by dark-field imaging, the Fourier transform of an
optical microscope image, and deep-learning-based inpainting, but they have difficulties in
practice [102—104]. Thus, the experiments are usually conducted with moderate resolution
conditions, where SDD is sufficiently long. Here, we developed a new method, named
multidistance CDI, that measures diffraction patterns at multiple SDDs to complement lacking
low-Q signals with a diffraction pattern obtained at a longer SDD, offering the best image
resolution as diffraction signals allow [12]. In this chapter, multidistance CDI with a dedicated
phase retrieval algorithm and experimental results on 3D tomography of a mesoporous SiO-

nanoparticle would be introduced.

4.2. Multidistance CDI and adaptive phase retrieval algorithm

Figure 4.1 - Schematic diagram of coherent X-ray tomography using multidistance CDI.
Adapted from Ref. [12], American Chemical Society.

As mentioned above, a basic concept of multidistance CDI is straightforward, measuring
diffraction patterns at different SDDs. It does not restrict the number of SDDs for the diffraction
patterns, but the case of two SDDs, zygr and z g, where HR and LR denote high and low

resolution, respectively, is treated for the sake of simplicity. A similar approach has been
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proposed, but it directly merges two patterns into a single diffraction pattern [105]. However,
if the ratio of two SDDs, which is defined as 1 = z;g/zyg, is not an integer or the pixels of
each pattern are not exactly matched, this direct merging method uses interpolation to assign
values from the low-resolution pattern, I}y, to unknown pixels of the high-resolution pattern,
Iyr. Such interpolation gives significant errors to the low-Q signals, thereby resulting in
erroneous reconstruction results. On the contrary, multidistance CDI does not directly merge
the measured patterns; instead, it sequentially uses both patterns as they are without any

interpolation during the phase retrieval process.

Iyr support

u™

Figure 4.2 - Schematic diagram of adaptive phase retrieval algorithm for multidistance CDI.
Adapted from Ref. [12], American Chemical Society.

As the conventional algorithm cannot deal with multiple diffraction patterns with
different oversampling ratios, an adaptive phase retrieval is newly introduced. A base diffraction
should be Iyg for a high-resolution image, and the Fourier-space projection onto Iz requires
matching its oversampling ratio with Iyg. Also, it is preferred to priorly update low-resolution
information, which reflects an overall shape of the sample, for a stable Fourier-space projection;
the projection onto I;g should be conducted prior to the projection onto Iyg. In this regard,
the projection with respect to two diffraction patterns is defined as a sequence of projection

operators onto I;g and Iyg in order. For Iy, the projection operator is defined as follows.

proj s = cropy [ {1 © eters0en}] D
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, where pad, isan operator that extends an inputby 7 times along each dimension by padding
zeroes to its boundaries and crop,, is an operator that reduces an input by 7 times along each

dimension by cropping at its center. Note that the minimum error of the matched oversampling

ratio is given as follows.

|6oprl < 1

or  2NNyr

(4.2)

,where ¢ and N is oversampling ratio and number of pixels along a single dimension. Using

this projection operator, the adaptive phase retrieval is given based on HIO as follows [4,47].

A5 = o, prolf ) o)

+ proj, [u(f) — BprOJ(reaD{projgfsl)u(j)}]

.(real) (real)

, where proj;_ and proj;.,,~ use Iyr and I g for the Fourier-space amplitude constraint,

respectively. Moreover, R-factor is redefined as follows.

RO i ||Tu(1)| —\/K|+CZ ||7-" pad,) u(f)]| —m|
YivIuri + ¢ Xiyn? iR,

, where ¢ is a weight parameter assigned to the contribution of I g, given by 1/n2.

(4.4)

To verify the proposed algorithm, numerical simulation was performed using the
Mandrill image from USC-SIPI image database (https://sipi.usc.edu/database) to generate
diffraction patterns by the Fourier transform. Oversampling ratios for diffraction patterns were
set as 9 and 3 along each dimension for ;g and IyR, respectively. Diffraction patterns were
scaled to have total diffracted intensities of 10® photons, and the Poisson noises were added for
the noisy case. For phase retrieval, identical procedures were performed in both cases; 900
iterations of HIO with = 0.9 followed by 100 iterations of ER were conducted for total 128
initial random phases and the best 25% of resultant images were averaged to obtain a final
image. For an evaluation of the reconstructed images, normalized root-mean-square error
(NRMSE)), structural similarity index measure (SSIM), and peak SNR (PSNR) were calculated

with respect to the original test image [106]. These metrics are defined as follows.
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NRMSE(w, tef) = (4.5)

(Zﬂu.uuref + Cl)(zau,uref + CZ)
(#121 + #aref + Cl)(oﬁ + O-l%ref + CZ)’

maxu
PSNR (1, Urep) = 20logy, ref

vV ”(u—uref)z

, where u,er is a reference image, here the ground-truth image, c¢; and c, is stabilizing

SSIM(U, Uper) =

variables, given by ¢; = (0.01 maxupef)? and ¢, = (0.03 max ueg)?, and py,, 0y, and o,
are mean, variance, and covariance of the images, u and v, respectively. Note that all

operations are for values of the pixels in the images.
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Figure 4.3 - Numerical simulation for a comparison of direct merging method (Merge) and
non-merging method with the adaptive algorithm (Adaptive). (A, B) The test image (A) and
corresponding diffraction patterns (B) with different oversampling ratios are presented. (C, D)
Reconstructed images (C) and their image quality metrics (D) are also provided for both
noiseless and noisy (+N) cases. Markers and whiskers indicate average and standard error of
the metrics, respectively. Adapted from Ref. [12], American Chemical Society.

As a result, the proposed method showed significant improvements of image qualities

compared to the direct merging method for both noiseless and noisy cases. The metrics also
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represented the superiority of the adaptive algorithm, showing all metrics surpassing the direct
merging method. It even showed higher PSNR for the noisy case compared to the noiseless case
with the direct merging method. Considering that n was given as 3 and the integer 7
minimizes the interpolation error, the proposed method truly offered the best performance
dealing with multiple diffraction patterns, outperforming the direct merging method. Thus, the
adaptive phase retrieval algorithm with as-measured diffraction patterns was verified to

reconstruct more accurate images than using the merged pattern.

4.3. Multidistance coherent X-ray tomography of mesoporous SiO; nanoparticle

Using the proposed method, coherent X-ray tomography experiment was performed with a
mesoporous SiOz nanoparticle at 9C beamline of Pohang Light Source-1I (PLS-II) in Pohang
Accelerator Laboratory (PAL). X-ray beam was generated by in-vacuum undulator and
spectrally filtered by Si double-crystal monochromator. Both devices are tune to the photon
energy of 6 keV. Then, the beam was focused into 15 um (horizontal) x 7 pm (vertical) by a
pair of Kirkpatrick—Baez mirrors located 3 m upstream from the sample, giving total flux of
3.89 x 108 photons-s™!-um~2. Beam paths were in vacuum and imaging chamber was purged by
He gas. Diffraction patterns were measured by EIGER 2X 1M detector (DECTRIS Ltd.), of
which the size of each pixel is 75 x 75 um?, at 4.57 m and 1.57 m downstream from the sample,
giving 1 = 2.91. For a tomographic scan, total 27 angles from —69.44° to +69.44° in an equal
slope were assigned to each measurement [30]. The mesoporous SiO> nanoparticles were
synthesized by spherical and hollow assembly-based particle engineering (Prof. Jinwoo Lee’s
group at KAIST) [97]. Then, the particles in a powder form were placed in ethanol, dispersed

by sonication, and spread on a 30-nm-thick Si3N4 membrane for the experiment.

As radiation dose gradually damages the sample, it is important to determine a secure
total exposure time for the high-resolution imaging experiment. For this purpose, irradiation
with an exposure time of 5 s was repeated to an identical particle and correlation coefficients
between diffraction patterns from the first and subsequent exposures were calculated [107]. As

a result, total exposure time of 300 s was set as a safe limit, retaining the correlation coefficient
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above 90% of the initial value. Thus, the exposure times were setas 1 s for I g and 5 s for Iyg,
giving total exposure time of 162 s, which is well below the limit. For the further validation,
diffraction patterns were additionally measured at the initial angle after the main experiment
and the correlation coefficient with the first exposure of the main experiment was calculated as

0.995; therefore, an influence of the radiation damage was negligible.

104

10?

(suozoyd) Apsuaiu|

(¢-Wu 40T x)
Aysuap pajoaslfoid

(g-wu ,0T x ) Ausuap uoi3d3|3

Figure 4.4 - Multidistance coherent X-ray tomography of mesoporous SiO> nanoparticle. (A,
B) An example of diffraction patterns (A) and corresponding 2D projection image (B) are
presented for the measurement at ¢ = 0°. (C) Scanning electron microscope (SEM) image is
also given for the reference. Scale bars represent 500 nm. (D) 3D image reconstructed from
the tomographic scan. Several shell-like periodic structures are indicated by dashed lines.
Adapted from Ref. [12], American Chemical Society.

All measured data subtracted background signals and were cropped into 500 x 500
pixels [108]. After data processing, initial phase retrieval was conducted using the adaptive
algorithm consist of 1,400 iterations of HIO with f = 0.9 followed by 100 iterations of ER
for total 64 initial random phases. Then, the support was updated by a tight boundary of an

average of the best 12.5% resultant images and identical phase retrieval procedure was perform

- 66 -



with the updated support. The final image was obtained after repeating this process five times.
All 2D reconstruction results showed PRTF well above the typical criterion, 0.5, across all
spatial frequency region, giving the highest possible resolution of 8.65 nm defined from the

solid angle covered by the detector for the case of Iy [25].
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Figure 4.5 - PRTF (left) and line profile (right) for the resolution estimation of 2D and 3D

reconstructions, respectively. Gray region indicates PRTF range for all 2D reconstructions and
10%—-90% criterion was applied for the 3D case. Adapted from Ref. [12], American Chemical
Society.

3D tomographic reconstruction was achieved by the accurate real-space iterative
reconstruction (RESIRE) algorithm [109]. For a position alignment of given 2D images, 20
iterations of RESIRE were conducted and the given images were aligned in a subpixel unit
based on projection images from the reconstructed 3D image [110,111]. This process was
repeated until the misalignment below 0.01 pixel. After the alignment, the Fourier-space
projection was performed to the 3D image with the measured diffraction patterns. Then, 100
iterations of RESIRE were conducted for the final 3D image. As the tomographic scan was
performed only at 27 angles, the FSC cannot be properly calculated; therefore, an effective 3D
resolution was calculated by the 10%—-90% criterion on a line profile passing a voxel with the
greatest gradient value, giving the resolution of 13.3 nm. Such resolution was roughly four
times higher than the resolution of previous reports on nondestructive 3D imaging of porous
materials with the size up to few micrometers, outperforming the former imaging techniques
[112,113]. The reconstructed 3D image was visualized using the open-source software,

ParaView (https://www.paraview.org).

3D electron density distribution showed a good agreement with the electron
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microscope image with periodic structures of which a regular interval of the pores was roughly
30 nm. An overall shape of the target nanoparticle was identified as an adjoining double sphere,
which was from an incomplete separation during the spinodal decomposition. It also showed a
higher density at an intersecting region of two spherical chunks. This was supposed to be
occurred due to a substantial capillary pressure by the Marangoni flow that generates a rapid
movement of fluidic block-copolymer/SiO, droplets during the spinodal decomposition

[114,115].

4.4. Quantitative analyses on porous structures

Segmented pores

(¢-wu 0T x ) AlIsuap uoJ123|3

Total

Figure 4.6 - Pore structure extracted from the 3D image. (A—C) Examples of clustering (B)

and segmentation (C) of 3D electron density distribution (A) are presented. Clustering is for a
separation of a void region and segmentation is for an extraction of pores from the void
region. Adapted from Ref. [12], American Chemical Society.

For further quantitative analyses on porous structures inside the nanoparticle, additional data
processing procedures, clustering, segmentation, and skeletonization, were performed. The
clustering was for a separation of void regions from the 3D electron density distribution. This
was accomplished by using a plugin, trainable Weka segmentation, from the open-source

software, ImageJ2 [116,117]. It used a machine learning technique, the random forest classifier,
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based on mean and variance values of convolving cubic kernels with radii of 1 to 8 voxels. The
extracted void regions occupied 32.2% of the total volume of which the value represented a
porosity. This was a relatively low value compared to other mesoporous SiO» materials of which
porosities are around 50% or higher [118]. Moreover, 99.6% of the total void voxels were
interconnected, forming a highly interconnected complex structure like a network. Thus, a
network-based analysis can provide additional information, especially for regional importance

of the pore structure [119,120].
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Figure 4.7 - Network-based analysis of the highly interconnected porous structure. (A) A

pore network is visualized by assigning attractive and repulsive forces to connected and
unconnected nodes, respectively. The size of each node represents its degree rank and the
nodes with a same color represents a community. (B—D) Clustering coefficients (B),
eigenvector centrality (C), and closeness centrality (D) for each pore community. Markers and
whiskers indicate average and standard error of the metrics, respectively. Translucent lines
indicate an average for each region. Adapted from Ref. [12], American Chemical Society.

A pore network was constructed by dividing the void regions into multiple pores. This
was accomplished by using a segmentation algorithm, watershed, in the open-source library,

scikit-image [121]. It gradually fills the region from local minima based on a distance map until
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the region is fully filled to define segments. Here, the distance map was obtained by negatives
of the number of void voxels in convolving cubic kernels with the size of 3 x 3 x 3 voxels. The
segments, equivalently the pores, were identified to have a volume of 1.65 x 10* nm? on average.
Then, the obtained segments and interconnections with their neighbors were treated as nodes
and edges, respectively, constructing the pore network. Pore communities, which were groups
of pores with strong interconnections, were also defined using a heuristic method with the
modularity optimization [122]. The network was visualized using the open-source software,
Gephi, with a built-in continuous graph layout algorithm, ForceAtlas2 [123,124]. It arranges
the nodes by assigning attractive and repulsive forces to connected and unconnected nodes,
respectively. The size and color of each node indicated its degree rank and community,
respectively. Consequently, the network presented a similar shape with the sample but showing
an elongation between two circular chunks. The nodes at both ends were concentrated while
the nodes at an intermediate region were sparsely arranged. Accordingly, region 1 (R1) to region

3 (R3) were appointed along the long axis, «, for a further regional classification.

For a quantitative analysis of the pore network, three metrics, clustering coefficients,
eigenvector centrality, and closeness centrality, were calculated to investigate the importance
of each node in the network based on the graph theory. The clustering coefficient, which
represents a relevance of each node with its neighbors, was defined by a ratio of complete
interconnections between neighboring nodes based on the Watts—Strogatz model [125]. The
eigenvector centrality, which represents an influence of each node in the network, was defined
by a nonnegative eigenvector of an adjacency matrix of the network. The closeness centrality,
which represents a closeness of each node to other nodes, was defined by a reciprocal of the
average shortest path to other nodes. As a result, the nodes in Rl and R3 showed higher
clustering coefficients and eigenvector centralities but lower closeness centralities compare to
the nodes in R2. These tendencies represented that the nodes in R1 and R3 were densely
connected with the nodes in the same regions but not with the nodes in the other regions, while
the nodes in R2 showed exactly opposite behaviors, acting like a bridge between the nodes in
R1 and R3. They were also matched with the 3D image showing the channel-like porous

structure in the intersecting high-density region unlike the shell-like structures in both ends.
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Figure 4.8 - Quantitative analyses of the porous structure based on fractal theory and its

skeletons. (A) A distribution of the pore volume is presented for reference. (B) A box width to
box count graph is fitted by the power law and the exponent gives a surface fractal dimension
of 2.65. Blue and red lines indicate actual and fitted data, respectively. (C—F) Distributions of
pore volume to skeleton density (C), length and reciprocal tortuosity of branches (D and E,
respectively), and degree of junctions (F) are also presented using skeletons of the porous
structure. Adapted from Ref. [12], American Chemical Society.

Further quantitative analyses were conducted based on the fractal theory and skeletons
of the porous structure. A surface fractal dimension, which represents a space efficiency, or
similarly a roughness, of the porous structures with respect to their surface area, can be
determined by the box counting method [126,127]. This method counted the number of
overlapping components, equivalently boxes, of a regular 3D grid with the void regions while
increasing widths of the grid. If the box count, Ny, well follows the power law, the structure

can be described to have a fractality and the surface fractal dimension can be obtained by the

following formula.

-D
Npox = Aw, / (4.6)

, where A is an arbitrary coefficient, wyoy is a width of the grid, and Dy is a surface fractal

dimension. After the power-law fitting, the surface fractal dimension was obtained as 2.65 with
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R-squared of 0.9999, thereby the porous structure was identified to have the fractality. The
surface fractal dimension also means a surface complexity of the materials. The value of 2.65
was a relatively high value among the typical mesoporous materials mostly within the range
from 2.2 to 2.8 [118]. In addition, using the calculated surface fractal dimension, the porosity

can be obtained by the following equation based on a single-fractal pore model [128].

1-Dg/3

Tmin\>"2r Vini
g =1 () < g - (Fn) 4.7)

max Vmax

, where 7,;, and 7,4 are the minimum and maximum radii of the pores, respectively, and
Tomin/Tmax Can be approximately obtained by (Viyin/Vinax)'/? with the minimum and
maximum volumes, Vi, and V., respectively. The fractal-based porosity was calculated as

33.0%, which is analogous with the ratio of void regions calculated as 32.2%.

Skeletons of the porous structure also offer a geometric information, especially about
paths where adsorbates travel inside the nanoparticle [129]. To obtain the skeletons, the void
regions were skeletonized by the 3D medial surface axis thinning algorithm [130]. It gradually
thins the void regions with respect to their local medial surface axes. Then, the obtained
skeletons were organized into a minimum spanning tree by using the open-source library, Skan,
and all junctions with degrees of 1 or 2 were removed, eliminating the junctions at endpoints
and merging single branches cut by the junctions [131]. A skeleton density, which is a ratio of
skeleton voxels in the pores, was converged to 0.32 as the pore volume increased and a total
length of the skeletons was 1.56 x 10° nm. As the cross section of the skeletons occupied a
single voxel, an effective radius of the pores can be obtained by the following equation, giving

the value of 7.65 nm.

dres

Teff =
2\/ Pskel

, where pgrer 1s the skeleton density and d,es is the voxel resolution. When assuming the

(4.8)

cylindrical porous structure, the effective surface area and volume can be calculated as 7.50 x
107 nm? and 2.87 x 10® nm?, respectively, and the corresponding surface-to-volume ratio of

0.261 nm™! was identical to that of a sphere with a radius of 11.5 nm. In addition, ideal filling
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capacities of spherical adsorbates with a radius of 71,45 can be obtained based on the simple
pore-filling model for several cases: total 1.02 x 10° adsorbates with a filling ratio of 66.6% for
a simple close packing with 7,45 = 7o and total 1.67 x 10° adsorbates with a filling ratio of
53.6% and total 9.47 x 103 adsorbates with a filling ratio of 49.4% for interdigitated triangular
close packings with 7,45 = reff/(l + \/§) and 7,45 ® reff/(l + \/7/2), respectively [132].
Here, the interdigitated triangular close packings are analogous to the star of David, but the
triangles had intervals of 7,45 and (3/2)r,qs along a height direction of the cylinder,

respectively.

As the skeletons were organized into the minimum spanning tree, junctions and
branches of the tree structure can give additional geometrical insights. The branches presented
average length of 23.5 nm and average reciprocal tortuosity, or equivalently straightness, of
0.901, while an average degree of junctions was 3.18. Thus, when the adsorbates travel through
the porous structure inside the sample, they passed the routes that break into 3.18 branches for
every 23.5 nm of curved paths with the tortuosity of 1.11, on average. Moreover, a permeability
can be calculated using the Kozeny—Carman equation based on the smooth capillary model

defined as follows, giving the value of 2.12 nm? [133].

1
k = gT_lQTesz (4.9)

, where g is the porosity and 7 is the tortuosity. An effective radius of a grain for the smooth
grain packing model, equivalently with the smooth capillary model, can also be given as follows
based on the fractal pore-space model, giving the value of 16.4 nm.

-1/(Df-1)

2 ., 0
Tgrain = Teff <§T ! m) (4.10)

Then, the permeability is defined as follows, representing an equivalent result with the smooth

capillary model.

1 2/(Df-1)

- 2 1 0
k =§T 1Qrg2rain (g‘[ 1m) (411)
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4.5. Conclusion

Multidistance CDI with the adaptive phase retrieval algorithm has enabled nondestructive high-
resolution X-ray imaging compatible with large particles that exhibit smaller sizes of the zeroth
speckles. By overcoming the limitations of conventional CDI, multidistance CDI successfully
realized a nanoscale tomography of mesoporous SiO; nanoparticles in the actual experiment,
achieving the spatial resolutions of 8.65 nm and 13.3 nm in 2D and 3D, respectively. Especially,
the 3D resolution of 13.3 nm was roughly four times better than the resolution from the previous
reports on porous materials [112,113]. Based on the actual structural information of the
mesoporous nanoparticle, various quantitative analyses including network, fractal, and skeletal
analyses can be conducted after appropriate data processing procedures. Thus, multidistance
CDI offers a maximal resolution among the X-ray imaging techniques while taking all
advantages of CDI with the straightforward experimental setups, facilitating further
applications on in situ, in operando, and element-specific imaging of various functional

materials [134-138].

5. Off-axis vortex beam ptychography

5.1. Introduction

Vortex beams, of which wavefronts exhibit azimuthal phase gradients, have been spotlighted
due to their unique morphology and intrinsically defined OAM as previously described in
Chapter 3. Their unique characteristics make them serve as functional probes resolving
topologically distinct structures in various materials [77-80,139,140]. Additionally, their
intrinsic OAM offer a mode selectivity in optical transitions, facilitating a quantum-mechanical
control of materials in various fields [67,81,141,142]. In the X-ray regime, a generation of the
vortex beams is typically achieved by SZPs. However, a flux of the vortex beam is restricted
because of a limited transverse coherence length of the third-generation synchrotron facility
that requires a slit configuration blocking an incoherent portion of an incident flux. Additionally,

as SZP requires central beam stop (CBS) and OSA to discard direct transmissions, the flux loss
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becomes significant. In this circumstance, an off-axis geometry can be applied to SZPs for
circumventing the use of CBS, efficiently generating the focused vortex beam. Here, we
verified the generation of the focused X-ray vortex beams by the off-axis SZPs numerically and
experimentally in the hard X-ray regime and checked an effect of the off-axis vortex beam on
the ptychographic reconstructions [13]. In this chapter, new findings related to the

ptychography using off-axis X-ray vortex beam would be introduced.

5.2.  Numerical simulation of vortex beam generation by off-axis SZPs
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slit [ SzP I Sample e 2
| »
I Detector

Figure 5.1 - Schematic diagram of ptychography experiments using the off-axis SZP (left)

and example of off-axis SZP patterns (right). Points marked as 1 and 2 indicates nominal
diffraction center and beam center, respectively. The pattern is designed for [ =1 and a =
0.2 mrad along y-axis. A scale bar represents 10 um. Adapted from Ref. [13], American
Chemical Society.

Off-axis SZP patterns can be generated by binarizing the phase term of Eq. (3.59) by half-period
intervals. For both numerical simulation and actual experiment, parameters of the off-axis SZPs
were setas | =1, @ = 0.2 mrad along y-axis, and f = 135 mm at the photon energy of 6
keV. The generation of the vortex beam was numerically simulated by the Fresnel-Kirchoff
integral using a convolution-based approach implemented in the open-source library LightPipes
(https://opticspy.github.io/lightpipes). A size of the field for the simulation was 100 x 100 pm?
with a pixel resolution of 50 nm and plane-wave incidence partially illuminated the pattern by
a rectangular area of 30 um (horizontal) x 40 pm (vertical). The partial illumination reflected a
slit configuration for discarding an incoherent portion of the incident flux in the experiment.

Contributions of high foci were blocked by OSA with a hole diameter of 20 um positioned 50
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mm upstream from the focal plane. A far-field diffraction pattern from the focal plane was

generated by the Fourier transform.

A Off-axis SZP Focal plane

—135' mm 0 r;1m

B \ C
— 1
4x zoomed !
[
10° 10°

Intensity (photons)

Figure 5.2 - Numerical simulation of vortex beam generation by the partial illumination of

off-axis SZPs. (A, B) Light propagation by the Fresnel-Kirchoff integral (A) and far-field
diffraction pattern from the focal plane (B) are presented. The diffraction pattern clearly
shows difference between nominal diffraction center and beam center marked as 1 and 2,
respectively. (C) When the beam center is treated as a diffraction center, the inverse Fourier
transform gives specific azimuthal phase gradients, removing a phase ramp along y-axis.
Adapted from Ref. [13], American Chemical Society.

The generation of the off-axis focused vortex beam was successfully confirmed by the
numerical simulation of a light propagation from the partially illuminated off-axis SZP. The
generated wavefront at the focal plane showed a circular shape with a singularity at its center,
having inner and outer radii of 312 nm and 1036 nm at the half-maximum points in radial
intensity distribution. In addition, it exhibited a linear phase ramp of 2may/A from the off-
axis geometry. The far-field diffraction pattern showed a separation of nominal diffraction

center and beam center. When treating the beam center as a diffraction center, the inverse
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Fourier transform of the pattern gave the wavefront without the phase ramp, clearly showing
the counterclockwise rotation of the phase along the azimuthal direction that gave OAM of +h.

Such operation was equivalent to a Fourier-space shift of 2ma/A along Q,-direction and a

—2inay/A

real-space multiplication of e , removing the phase term from the off-axis geometry.

These shifted diffraction patterns would be called as center-corrected patterns hereafter.

5.3.  Numerical experiments on off-axis vortex beam ptychography

Numerical experiments on ptychography of a weakly scattering object using the simulated
beam were conducted to identify an influence of off-axis vortex beams in ptychographic
reconstructions. The object exhibited contrasts of 10% and 0.17 rad for its amplitude and phase,
respectively, compared to the empty space. Far-field diffraction patterns were generated along
a regular grid with an interval of 200 nm by the Fourier transform of element-wise product of
probe and object functions of which a window size was set to possess a pixel resolution of 50
nm. Each diffraction pattern was scaled to have a total diffraction intensity of 107 photons and

included Poisson and Gaussian noise with ¢ = 1/2.35482 to reflect measurement noises.

Ptychographic reconstructions were conducted for both as-centered and center-
corrected patterns using DM followed by least-squares maximum-likelihood (LSQ-ML)
algorithm with geometry and position refinements implemented in the publicly available
software package, PtychoShelves [38,143,144]. Specifically, 1,000 iterations of DM followed
by 100 iterations of LSQ-ML were executed with a root-mean-square error as an error metric.
However, as the reconstruction of as-centered diffraction patterns showed split probes and
corresponding separated multiple objects modes; therefore, 10,000 iterations, instead of 1,000
iterations, of DM followed by 100 iterations of LSQ-ML were executed and a probe alignment
was conducted to forcibly merge split probes into a single probe. After the probe alignment,

identical reconstruction procedures as before were performed.
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Figure 5.3 - Numerical experiments on ptychography of a weakly scattering object using oft-

axis vortex beams. (A) Amplitude and phase of the object and example far-field diffraction

pattern are presented. Scale bar represents 2 um. (B) Evolutions of root-mean-square errors

during ptychographic reconstructions are given. R1 represents an intermediate point right
after 1,000 iterations. Probe alignment is conducted for as-centered diffraction patterns after

10,000 iterations followed by additional 103 iterations. (C) Reconstructed probe and
amplitude of the object are presented. (D) Multiple object modes with distinct edge contrasts
appear at R1 and the contrasts are inverted for opposite off-axis directions. (E, F) Line

profiles of amplitude (E) and phase (F) of the object along yellow lines in (C). Adapted from
Ref. [13], American Chemical Society.

Final reconstructed images showed enhanced edge responses like the first-order

derivate of the Gaussian function in their amplitude, roughly three times stronger than that for
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a case of a typical Gaussian beam with [ = @ = 0. The phase of the resultant images well
followed the ideal image, showing only 2% difference on a full width at half maximum (FWHM)
of the edge gradient profile, while the case of the typical beam showed 3% difference. Both as-
centered and center-corrected patterns gave similar results, but the as-centered case had
difficulties to find proper images and a small oscillation appeared in the phase of the object.
This oscillation was from the regular scanning intervals and such effect was rectified in the
center corrected case during the refinement process [145]. Thus, regardless of the off-axis
angles, the vortex beam with [ = 1 offered better imaging performance than the typical beam

with [ = 0, but the diffraction center correction was required for a stable reconstruction.
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Figure 5.4 - Edge gradient profiles of the phase of the reconstructed object. Both original and
Gaussian-fitted profiles are presented.

During the reconstruction of the as-centered patterns, split probes and corresponding
multiple object modes appeared with edge contrasts in the amplitude of the objects. Unlike the
abovementioned final images, the edge contrasts showed directionality; bright upper and dark
lower edges appeared for the object modes located at upper and lower region of the
reconstruction window, while dark upper and bright lower edges appeared for the object mode
at the center. Interestingly, these directional edge contrasts inverted for the opposite off-axis
angle, @ = —0.2 mrad. This effect should be considered carefully even though the successful

reconstruction did not have any dependency on off-axis angles, especially for strong noise

conditions.

5.4. Synchrotron experiments on off-axis X-ray vortex beam ptychography
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Figure 5.5 - SEM images of fabricated off-axis SZP patterns. Scale bars represent 50 um, 5
pum, and 1 um in order.

For actual experiments, the off-axis SZPs were produced with the help of fabrication service by
National NanoFab Center (NNFC). The off-axis SZP patterns with parameters as described
above were patterned with 1-um-thick W on 1-pm-thick low-stress SisNs membrane. First, the
Si3N4 membrane was chemically deposited on both sides of a p-type Si wafer. For a frontside
patterning, 10-nm-thick Ti and 1-um-thick W were sequentially deposited by multi-target
sputtering. Then, bottom anti-reflective coating (BARC) and photoresist were deposited after a
deposition of a hard mask consist of amorphous carbon and SiON, facilitating an etching of the
thick W layer. After the deposition, KrF lithography of the photoresist layer was conducted
followed by dry etching of BARC and hard mask layers. Finally, the W layer was etched by SFe
in a metal etching system, TCP-9600PTX (Lam Research Corp.). For a backside opening, both
reactive ion etching and wet etching by KOH were employed to remove Si in I mm X 1 mm

behind the pattern, forming the membrane structure.
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8x.zoomed..
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Figure 5.6 - SEM image of the off-axis SZP patterns in the actual experimental geometry.

Images zoomed at principal centers of each off-axis SZP pattern are also presented. A scale
bar represents 30 um. Adapted from Ref. [13], American Chemical Society.
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The experiments were performed at 9C beamline of PLS-II in PAL. X-ray beam was
generated by in-vacuum undulator and spectrally filtered by Si double-crystal monochromator.
Both devices were tuned to a photon energy of 6 keV. Generated monochromatic beam was
cropped into a rectangular area of 30 um (horizontal) X 40 um (vertical) by two slit systems
located at 3.8 m and 0.1 m upstream from the off-axis SZP, considering the nominal transverse
coherence lengths of 55 um (horizontal) and 62 pm (vertical). The nominal value was calculated
by using Eq. (1.79), considering the undulator giving a source size of 500 um (horizontal) x 50
um (vertical) located at 30 m upstream from the imaging chamber and a horizontal white beam
slit with a separation of 30 um located at 16 m upstream from the chamber. A circular aperture
with a diameter of 20 um made of 50-um-thick W was positioned at 15 mm upstream from the
sample, serving as OSA. Total intensity of the generated off-axis vortex beam was measured as
2.16 x 107 photons-s~!. Diffraction patterns were measured by the photon-counting detector,
EIGER 2X IM detector (DECTRIS Ltd.), with SDD of 4.37 m and an exposure time of 0.5 s
for each measurement. The patterns were cropped to have a pixel resolution of 50 nm, matching

the resolution with the numerical simulation.
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Figure 5.7 - Recovered beam profile generated by the off-axis SZPs from ptychography

experiments on the test target. A scale bar represents 3 um. Adapted from Ref. [13], American
Chemical Society.

First, the experiments were performed on a test target made of 600-nm-thick W to
confirm the generation of the vortex beams. Recovered beam profiles were analogous with the

results from the numerical simulation; therefore, the fabricated off-axis SZPs were verified to
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have designed performance. The reconstructed probes had inner and outer radii of 340 nm and
1130 nm, respectively, and these values were approximately 9% larger than those from the

numerical simulation. The linear phase ramp was also eliminated by the center correction as

expected.

Figure 5.8 - SEM image of the bar-shaped multilayer film. A scale bar represents 3 pm.
Adapted from Ref. [13], American Chemical Society.

After the verification of the manufactured off-axis SZPs, the experiments were
performed on a bar-shaped multilayer film. The bar-shaped sample was fabricated by lift-off
process for the multilayer film (Dr. Jun Woo Choi’s group at KIST). Specifically, [Pt (3
nm)/Gdz4FessCoio (8 nm)/MgO (1 nm)]20 multilayer film was deposited on a 100-nm-thick
Si3Ns membrane and patterned by electron beam lithography followed by the lift-off process.
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Figure 5.9 - Reconstruction results of off-axis vortex beam ptychography on the bar-shaped

multilayer film. (A) Evolutions of the errors during ptychographic reconstructions are given.
(B) Reconstructed probes and amplitude of the objects are presented. A scale bar represents 3
pum. Adapted from Ref. [13], American Chemical Society.

As the diffraction signals from the sample were weak, a ptychographic reconstruction
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was failed to produce proper shapes of probe and object when using the as-centered patterns.
On the other hand, the reconstruction using the center-corrected patterns showed appropriate
images for both probe and object, representing the importance of the center correction when
using off-axis beams. Thus, the probe functions obtained from the experiment on the test target

were assigned as initial estimations to improve the quality of the images.
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Figure 5.10 - Final results of off-axis vortex beam ptychography on the bar-shaped multilayer
film. (A, B) Reconstructed images (A) and differences for the case of opposite off-axis angles
(B) are presented. (B) A scale bar represents 3 um. Adapted from Ref. [13], American
Chemical Society.
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Figure 5.11 - Resolution estimation of off-axis vortex beam ptychography by FRC with the
0.5-bit information threshold curve.

Resultant images showed directional edge responses, which exhibited an inversion for
the opposite off-axis angle, in the amplitude of the objects like as the intermediate result for the
case of as-centered patterns from the numerical simulation and their edge contrasts were

approximately 5%. On the other hand, the phase of the objects was matched with the SEM
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image of the sample. In addition, as values of the phase delay satisfied the following relation, a

thickness of the sample can be derived.
21
Ap = —72(1 — )t (5.1)
i

, where n; and t; are refractive index and thickness of the ith layer. Using the refractive
indices from the literature, the thickness of the sample was calculated as 226 + 7.3 nm,
compatible with the designed value of 240 nm [146]. Note that a thickness ratio of each layer
was assumed to be equivalent to the designed ratio and the refractive index of Gd24FessCo1o
layer was roughly given by a weighted average of composing elements by the composition
ratios. Meanwhile, an effective resolution of the off-axis vortex beam ptychography was
estimated by FRC with the 0.5-bit information threshold curve defined in Eq. (2.14) and Eq.
(2.16), respectively, giving the value of 51.9 nm [57].

5.5. Conclusion

The generation of off-axis vortex beams and their influences on ptychography were successfully
verified with weakly scattering objects by both numerical simulations and synchrotron
experiments. The off-axis SZPs enabled efficient generations of the vortex beams by
eliminating the use of CBS when transverse coherence lengths were limited. However, the
linear phase ramp appeared due to the oft-axis geometry, thereby correction of the diffraction
center was introduced for a removal of such phase ramp and also stable ptychographic
reconstructions. When dealing with the weakly scattering objects, off-axis vortex beam
ptychography offered strong directional edge contrasts in amplitude of the reconstructed objects
depending on the off-axis direction, while their phase properly exhibited the structure of the
sample. Moreover, regardless of the off-axis angle, the vortex beam provided the improved
resolution compared to the typical non-vortex beam. Thus, off-axis X-ray vortex beam
ptychography would facilitate edge-sensitive imaging of weakly scattering samples while
enabling an extraction of accurate structural information from the phase of reconstructed images.

Considering the unique nature of the vortex beams, this can be extended by utilizing their
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chirality sensitivity and transition selectivity [67,77—80].

6. Helical dichroism on ferroelectric topological defects

6.1. Introduction

Topological defects are topologically protected structures that remain stable under certain
conditions and include domain walls, vortices, and quasiparticles like skyrmions [147,148].
Various kinds of topological defects are found in materials and often induce hidden properties
that are not normally exhibited. Morphology of a topological defect can be defined by a winding
number, and a sign of the winding number provide the most basic information such as
directionality or handedness of its morphology. Identifying such information is crucial to

understand physical properties from topological defects in materials systems.

Recently, helical dichroism, which is dichroism caused by OAM of light, has been
reported in various chiral systems [77-80]. Since OAM of light is defined from a helical
wavefront that has a constant phase gradient along azimuthal direction, it has high degrees of
freedom corresponding to integer times of A compared to SAM, which is limited to +A from
left and right circular polarization, respectively. In addition, it has been theoretically predicted
that various systems exhibit strong helical dichroism in the hard X-ray regime [81]. Despite this
prediction and advantages of hard X-rays in imaging science, experimental reports are limited.
Thus, investigation of helical dichroism in the hard X-ray regime is necessary for a development
of functional nanoprobes for such topological structures exhibited particularly in ferroelectric
systems, but dichroism from these systems have been identified only as soft X-ray circular
dichroism [149,150]. Here, we conducted an X-ray fluorescence spectroscopy experiment on
an epitaxial thin film of a ferroelectric material using hard X-ray vortex beams and employed a
physical model for an interpretation of measured signals. In this chapter, overall experimental
details and results would be introduced with the physical model for helical dichroism. Note that

this work is being prepared for publication and the data have not yet been fully analyzed.

6.2. Helical dichroism and ferroelectric structures of BiFeO3
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Typical topological defects that appear in polarization structures of ferroelectric materials are
ferroelectric domain walls, polar vortices, and polar skyrmions. In a case of domain walls, they
show gradual rotations of polarization vectors along the axis interconnecting two different
ferroelectric domains; therefore, they possess chirality that might raise dichroic events during
scattering processes of photons. However, the polarization itself is not observable in E1-E1
scattering because an electric dipole has an odd parity, and signals are faint for E1-E2
interference in hard X-ray regime. Instead, a chiral arrangement of electric quadrupoles has an
imaginary component, therefore circular dichroism can be observed [150,151]. In this regard,
helical dichroism can replace circular dichroism with stronger sensitivity on topological defects
in hard X-ray regime. A photon with the OAM gives additional values to the total angular
momentum during a scattering process, triggering multipole transitions [67]. Meanwhile,
nanoscale structural defects itself can directly assign OAM to lights, and this has been reported
with dislocation singularities in single-crystal Si [152]. Thus, there are many routes to incur

helical dichroism from topological structures.

For an investigation of helical dichroism, BiFeOs was selected as a target material.
BiFeOs is a multiferroic material that shows both ferroelectricity and antiferromagnetism with
critical temperatures higher than room temperature, and it exhibits stripe ferroelectric domains
[153]. Its ferroelectric domain walls and rotation axes of consisting polarizations are well
arranged along a same direction. Additionally, rotations of polarizations in each domain wall
have also been reported to share an identical handedness, thereby having homochirality across
the sample [149]. For this reason, BiFeO3 is suitable for an identification of helical dichroism

from topological defects.

Atomic configurations of single-crystal BiFeOs; obviously show regular arrangements
with slight atomic displacements of Bi or Fe cations toward pseudocubic vertices that
correspond to the polarizations [154]. In addition, considering experimental parameters with
theBragg reflection condition, the model described in Section 3.4 is preferred to take account
of 3D rotations of those configurations. Thus, starting from Eq. (3.42), an absorption rate in the
frequency domain is modified as follows [84]. Note that only the first term that represents an

electron excitation from g to f is considered for the sake of simplicity.
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, where R is a rotation matrix for the Euler angles. When a polarization state of an incident

beam is linear along x-axis, each integral term becomes as follows.
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,where i isanindex for each atom, R, isarow vector from the rotation matrix corresponding
to an x-axis component, subscripts indicate indices of the Hermite polynomial in order, and
superscripts indicate final and initial states of electron transition in order. Using these terms,

the absorption rate becomes as follows.
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As wave functions are assumed to be the Gaussian-type orbitals, various basis sets such
as STO-3G can be used [155]. For example, STO-3G is a minimal basis sets approximating the
Slater-type orbitals each by linear combinations of three primitive Gaussian functions. Thus, as
terms with the wave functions and their gradients are complicated, it is convenient to rearrange
the coordinate by a substitution of ' = R~1r — R; with an atomic position, R;, for the ith

atom. Then, Eq. (6.2) becomes as follows.
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Note that gradient operators are still with respect to 7. For s- and p-orbitals that contribute to

major E1 transitions of Fe atoms, the primitive Gaussian function is defined as follows.
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, where j is an index of each composing primitive Gaussian function. Then, their partial

derivates with respect to 7 are given as follows.
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,where u and v are arbitrary coordinates. Gradients of the wave functions are finally derived
as follows.
v ) = —2GaReelr'l

@) 2 (6.7)
Vl/}pv'] (‘r’) = Cj(_zajv’:Rr’ + Rév’)e_ajlr |

-88 -



Using these relations, the absorption ratio can be calculated depend on topological charges of

incident beams, thereby resulting in helical dichroism.

6.3.  Synchrotron experiments on helical dichroism with BiFeQ;

Experiments were performed at 9C beamline of PLS-II in PAL. X-ray beam was generated by
in-vacuum undulator and spectrally filtered by Si double-crystal monochromator. Both devices
were tuned for an energy scan from 7.110 keV to 7.145 keV, covering near K-edge of Fe. Then,
the beam was cropped into 30 um (horizontal) X 40 um (vertical) rectangle by two slit systems
located at 3.8 m and 0.1 m upstream from off-axis SZPs and illuminated the SZPs to generate
vortex beams equivalently with our previous work [13]. A circular aperture with a diameter of
20 um made of 50-um-thick W was positioned at 15 mm upstream from the sample, serving as
OSA. Total intensity of the beam was measured as 2.16 x 107 photons-s™!. Diffraction patterns
and fluorescence signals were simultaneously measured by photon-counting detector, EIGER
2X 1M detector, and silicon drift detector, SiriusSD (RaySpec, Ltd.). The photon-counting
detector was mounted at the arm of a diffractometer, giving SDD of roughly 0.8 m, and the
silicon drift detector was installed close to a sample and nearly perpendicular to the incident
beam to maximally exclude an influence of scattered photons. Measurements were conducted
under the Bragg reflection condition for pseudocubic (0 0 1) of BiFeOs with a small 8-offset

for the highest contrast of satellite signals from ferroelectric domains.
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Figure 6.1 - PFM images of BiFeOs3 thin film. Coordinates are given based on pseudocubic
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lattice. A scale bar represents 1 um.

Sample was epitaxially grown single-crystal BiFeO; thin film by pulsed laser
decomposition (Prof. Chan-Ho Yang’s group at KAIST). Specifically, the film was BiFeOs (120
nm)/SrRuO3 (40 nm) deposited on orthorhombic [1 1 0]-oriented DyScOj3 substrate with a 20-
nm-thick LaAlO; capping layer. Prior to the experiments, piezoresponse force microscopy
(PFM) and X-ray diffraction (XRD) measurements were conducted to identify ferroelectric
domain structures and lattice parameters, respectively. As a result, by PFM measurements, the
sample was confirmed to have well-defined stripe ferroelectric domains that only contain in-
plane variations across the domains. XRD measurements gave pseudocubic lattice parameters
of 3.8475 A, 4.0322 A, and 3.9894 A corresponding to a, b, and c, respectively, extracted
from 6-260-scan curves near pseudocubic (0 0 3), (-1 0 3), and (0 1 3) Bragg peaks of BiFeO:s.
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Figure 6.2 - Contrast changes of satellite peaks from ferroelectric domains with respect to a
specular peak during @-rocking at a photon energy of 7.130 keV.

Before main experiments, the 6 -offset was determined from contrast changes of
satellite signals from the ferroelectric domains with respect to specular signals during 6-
rocking. Here, the offset angle was negatively given due to an influence of the strong
orthorhombic (1 1 0) Bragg peak of DyScO; substrate that appear at angle slightly higher than
that of the pseudocubic (0 0 1) Bragg peak of BiFeOs. As a result, moving averages with 5 x 5
kernel showed a smooth curve with the maximum value at the 8-offset of —0.062°. As the value
of —0.062° was identified at a photon energy of 7.130 keV, the offset angles were adjusted
proportional to energy ratios. After deciding the 6-offset, fluorescence signals and diffraction

patterns were collected at a fixed sample position at different energies.
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Figure 6.3 - Diffraction patterns measured near the pseudocubic (0 0 1) Bragg peak of

BiFeO3 with the 8-offset of —0.062° at a photon energy of 7.124 keV. They are measured
with different OAMs and sample orientations. Satellite peaks from ferroelectric domains are
marked by red triangles. A scale bar represents 0.025 nm™'.

The sample was aligned based on the satellite peaks from its ferroelectric domains. As
the domains were laid along the pseudocubic [0 1 0]-direction of BiFeOs, the coordinates were
matched with the pseudocubic lattice of BiFeOs. After the sample alignment, the fluorescence
signals were collected for sample orientations along +y- and —x-directions with photon
energies from 7.110 keV to 7.145 keV. Energy steps were set as 1 eV for the range from 7.120
keV to 7.135 keV and 5 eV otherwise. The measured fluorescence spectra were fitted with the
Voigt profile to extract intensities for Sc Ka and Fe Ka emission lines, and confidence
intervals for the fitting were also identified with a confidence level of 95%. These signals would
be related to an absorption of each atom. Then, as the signals of interest was for Fe atoms,
extracted Fe Ka components were normalized by Sc Ka components, giving final X-ray
absorption spectra. The absorption spectra showed a smooth curve with a rising edge from
7.120 keV to 7.127 keV and two post-edge peaks at 7.127 keV and 7.133 keV. The first peak

was known to be caused by the ligand-to-metal charge transfer process, in which electrons in
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O 2p-orbitals partially transfer to Fe 3d-orbitals, and the second peak came from dipole

transitions from 1s-to 4p-orbitals of Fe cations [156].
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Figure 6.4 - X-ray fluorescence signals (left) and their asymmetry ratios for helical dichroism

(right) measured with different sample orientations. Rising edge regions are colored gray, and
whiskers indicate propagated uncertainties from 95% confidence intervals for the Voigt-
profile fitting of raw data, respectively.

Asymmetry ratios of the absorption spectra for helical dichroism were calculated as

follows. Note that propagation of uncertainty was applied with 95% confidence intervals for

the fitting.

Lii(w) —I_1(w)
L1 (w) + 11 (w)

ARyp(w) = (6.8)

, where [ is an absorption intensity and its subscript indicates a topological charge of an
incident beam. The calculated asymmetry ratios showed clear helical dichroism depend on
OAMs of the incident beam. They also exhibited different behaviors for different sample
orientations, presenting roughly three peaks in total with different energies; the first one near

7.121 keV was a positive peak appeared only for +y-direction case, the second one near 7.122
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keV was a negative peak for +y-direction case but positive for —x-direction case, and the last

one near 7.124 keV was a positive peak appeared only for —x-direction case.
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Figure 6.5 - Asymmetry ratios of X-ray fluorescence signals for linear dichroism. Rising

edge regions are colored gray, and whiskers indicate propagated uncertainties from 95%
confidence intervals for the Voigt-profile fitting of raw data, respectively.

As the X-ray beams were linearly polarized along the horizontal direction, the sample
orientations along +y- and —x-directions gave polarization vectors along pseudocubic [1 0
0]- and [0 1 O]-directions of BiFeOs, respectively. The lattice parameters, a and b, were
different as a < b; therefore, the orbitals lied along y-axis have lower energies than those lied
along x-axis. In this circumstance, linear dichroism would be raised depend on the sample

orientations. Asymmetry ratios for linear dichroism can also be derived from the measured

absorption signals as follows.

[I+1,+y(0)) + 1—1,+y(0))] - [I+1,—x(w) + I—1,—x(w)]

AR, p(w) =2
LD I+1,+y(w) + I—1,+y(w) + I+1,—x(w) + I—l,—x(w)

(6.9)

, where subscripts of S indicate topological charge and sample orientation in order. They
showed two peaks with different signs in the rising edge region, where helical dichroism was
observed. The negative peak represented orbitals lied along y-axis, while the positive peak
represented orbitals lied along x-axis. These peaks appeared at different energies as expected;
orbitals lied along y-axis for lower energy than those lied along x-axis. As linear dichroism
shared same energy ranges with helical dichroism, it provided additional information including

directionalities of the involved orbitals for an interpretation of helical dichroism.
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With these experiments, an existence of helical dichroism for ferroelectric structures of
BiFeOs was experimentally confirmed together with the directional information on contributing
orbitals based on linear dichroism. In accordance with these observations, further analyses
based on the physical model as described in Section 6.2 will be conducted to find relationships
between helical dichroism and ferroelectric structures of BiFeOs, especially with the

topological defects.

6.4. Conclusion

The experimental observation of helical dichroism on ferroelectric structures was successfully
accomplished with the epitaxial thin film of BiFeOs using hard X-ray vortex beams generated
by off-axis SZPs. The physical model to analyze helical dichroism was also suggested for
single-crystal ferroelectric materials with arbitrary orientations. Although theoretical analyses
using this model are not conducted yet, the findings themselves sufficiently proved the
existence of helical dichroism on ferroelectric structures whether it came from the topological
defects or not. According to this discovery, helical dichroism together with linear dichroism
would give structural information that might not be captured by ordinary imaging methods;
therefore, a combination of such dichroic effects with X-ray diffraction imaging methods has a

great potential for functional nanoimaging of ferroelectric materials.

Considering that the X-ray fluorescence yields were integrated values that are not
spatially resolved, the imaging methods using helical dichroism would give higher contrasts on
OAM-sensitive structures in ferroelectric materials. Recently, 3D tomography methods using
hard X-ray ptychography with circular and linear dichroism have been successfully
demonstrated, identifying magnetization vectors and crystal orientations of the materials,
respectively, with nanoscale resolution in 3D [157,158]. As 3D Bragg ptychography provides
information on atomic displacement fields that are crucial for ferroelectric materials, a
combination with helical dichroism would offer a great opportunity to investigate OAM-
sensitive structures in ferroelectric materials with an exceptional sensitivity on 3D

arrangements of their polarizations [159].
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IV. Development of Deep-Learning Models for CDI

7. Diffraction pattern denoiser

7.1. Introduction

A rapid development of computing devices and methodologies has opened a new avenue in
various scientific areas with the help of machine-learning techniques [160—163]. As scientific
research relies on analyses of experimental data, computational methods, which can efficiently
and accurately extract meaningful information from the measured data, have been demanding.
This becomes severe for imaging science because of relatively large size and noise vulnerability
of image data. In this circumstance, deep-learning techniques with deep neural networks (DNN5s)
have recently showed a notable progress while reducing human inspection times in beam
diagnosis, ultrafast photonics, and various microscopies including localization microscopy,

scanning tunnelling microscopy, holography, and coherent imaging [164—167].

Convolutional neural networks (CNNs) are DNNs of which layers include convolution
operations instead of element-wise linear operations [168,169]. Such operation offers an
efficient calculation by convolving a small kernel with trainable parameters across the image
data, while effectively reflecting local distributions of the data. Using these networks, phase
retrievals of images measured with low photon counts, diffusive media, and holography have
been successfully demonstrated, outperforming conventional algorithms with much faster
processing times [170—172]. Despite such superior performance of CNNs in imaging science,
DL techniques has not been actively developed with data in the k-space, or equivalently
reciprocal space. Considering that scattering data, especially for the X-ray regime, are mapped
in the k-space with respect to Q, interpretations of such data using DL approaches have been
demanding. However, wide value range, strong noise, and partial loss have impeded
applications of CNNs to the k-space data. Here, we proposed a k-space CNN to suppress
noises in the noisy, partially damaged k-space data and investigated its positive impact on

phase retrieval [14]. In this chapter, this DL-based approach would be introduced.

7.2.  k-space convolutional neural network for denoising diffraction data
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Figure 7.1 - Schematic diagram of the k-space CNN for denoising noisy, partially damaged
diffraction patterns. Adapted from Ref. [14], American Physical Society.

Layer Output shape
o, Structure (€ x Hx W)
0 — X 1 x512 %512
1 PC(7,2,3) + BN+ ReLU — x; 16 x 256 x 256
2 PC(5,2,2)+ BN+ ReLU — x, 32 x 128 x 128
3 PC(5,2,2) + BN+ ReLU — x5 64 x 64 x 64
4 PC(3,2, 1)+ BN +ReLU — x, 128 x 32 x 32
5 PC(3,2, 1)+ BN+ ReLU — x; 128 x 16 x 16
6 PC(3,2, 1)+ BN+ ReLU — x¢ 128 x 8 x 8
7 PC(3,2,1)+ BN+ ReLU — x;, 128 x4 x4
8 PC(3,2, 1)+ BN+ ReLU — xg 128 x2 %2
9 (xg, Rxg) — Concatenate +PC(1, 1, 0) + BN + ReLU — x, 128 x2 %2
10 (x;,Uxy) — Concatenate +PC(3, 1, 1) + BN + LReLU — x;, 128 x4 x 4
11 (%6, Ux19) — Concatenate + PC(3, 1, 1) + BN + LReLU — x, 128 x 8 x 8
12 (x5, Uxy,) — Concatenate + PC(3, 1, 1) + BN + LReLU — x;, 128 x 16 X 16
13 (x4, Ux,5) — Concatenate + PC(3, 1, 1) + BN + LReLU — x5 128 x 32 x 32
14 (x3,Ux;3) — Concatenate + PC(3, 1, 1) + BN + LReLU — x;, 64 x 64 x 64
15 (x5, Uxy,) — Concatenate + PC(3, 1, 1) + BN + LReLU — x5 32 x 128 x 128
16 (x,, Uxy5) — Concatenate + PC(3, 1, 1) + BN + LReLU — x4 16 x 256 x 256
17 (%9, Ux,4) — Concatenate + PC(3, 1, 1) 1 x512 %512

Table 7.1 - Full description of layers composing the k-space CNN. The layers corresponding

to encoder, interlayer, and decoder are colored in green, orange, and blue, respectively. All
convolution operations are given with kernel size, stride, and padding parameters in
parentheses and they are followed by batch normalization (BN) and activation functions,
rectified linear unit (ReLU) and leaky ReLU (LReLU) for encoder and decoder, respectively,
except for the last layer. Concatenation is performed along the channel axis and 180° rotation
and nearest-neighbor upsampling operators are denoted by R and U, respectively.

The k-space CNN was designed to handle noisy, partially damaged diffraction patterns from
single-pulse diffraction measurements using XFELs [173]. Noise and partial loss in the

measured data were originated from limited photon counts in a single X-ray pulse, beam stop
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configuration, detector chipset arrangement, and other unwanted contributions. As conventional
methods have not been successfully overcome these obstacles, the proposed DL-based
approach would offer an effective option dealing with such data. For this purpose, the network
was designed based on U-Net, which have a symmetric encoder—decoder architecture with
skipped connections between encoder and decoder [ 174]. Here, all convolution operations were
replaced with partial convolutions (PCs), which correct an influence of missing values by
multiplying a reciprocal ratio of valid values in convolving regions, and nearest-neighbor
interpolation was applied for the skipped connections to match the dimensions. [175].
Additionally, as diffraction patterns of real-valued objects, which are typically assumed for CDI,
show centrosymmetry by the Friedel’s law, pointwise convolutions on values at
centrosymmetric points were newly introduced and were employed between encoder and
decoder layers of the network. Batch normalizations and activation functions were applied after
the convolution operations except for the last layer, and rectified linear unit (ReLU) and leaky
ReLU (LReLU) with a negative slope of 0.2 were used as the activation functions for encoder

and decoder layers, respectively.

High Intensity

Diffraction
with Noise

Low Intensity

Shape Density Object

Figure 7.2 - Schematic diagram of dataset generation for the k-space CNN.

Generation of datasets for training and test of the proposed k-space CNN was based
on the Fourier transform of unbiased pseudorandom objects that are defined by products of two
images, each randomly selected from publicly available image datasets, EMNIST and CIFAR-
10 [176,177]. EMNIST is an image dataset of handwritten character digits, defining shapes of
the pseudorandom objects, while CIFAR-10 is an image dataset of real-would objects,
providing their internal density distribution. Then, the noisy diffraction patterns were generated

by the following equation.

-97 -



I = Pois (|¢u|2 L) +(0,0) (7.1)
il Ful?
, where Pois(1) generates random values from the Poisson distribution for A events,
N(u,0) generates random values from the Gaussian distribution with mean and standard
deviation of u and o, respectively, and I, is total diffraction intensity. I, were set as 2 x
10° photons and 2 x 10® photons for low- and high-intensity patterns, respectively, with o =
0.25. Note that all operations were conducted for 512 x 512 window, giving oversampling ratio
of roughly between 20 and 40 along each dimension. The generated noisy diffraction patterns
were randomly masked for each training epoch by irregular masks from NVIDIA irregular mask
dataset with additional center masks reflecting CBS [175]. The irregular masks occluded 1% to
20% of the window and the center masks were defined as square masks with random radii from

1 to 64 pixels. Total 50,000 data were generated for training and 10,000 for test of the network.

For training the k -space CNN, a composite loss function was used for a
backpropagation of the network, comparing outputs of the network, of which inputs were low-
intensity diffraction patterns, with corresponding high-intensity patterns as references. The loss
function consisted of mean absolute error (MAE), £, MAE on masked regions, L ask,

perceptual loss, Lyerc, style loss, Lgyie, MAE between outputs and their 180° rotated images,

Lgymm, and total variation loss, Ly, [175,178,179]. Each function was defined as follows.

N
1 _ ZMl:Olui — v
L(u,v) = N;lui —vil, Linask (W, v) = —ZMiz() 1 o2
Lperc(u, V) =_,C(CD [u], ®[v]), Lstyle (u, v) = L(Gr[D{u}], Gr[d{v}]), )
Lsymm (u) = L(u: Rnu), Ltv(u) = L(u; Dl,xu) + L(u, Dl,yu)

, where u is an output image of the network, v is a reference image, ®[x] is high-level
feature vectors from the outputs from first to third blocks of ImageNet-pretrained VGG-16 with
an input image, x, Gr[®{x}] is the Gram matrix of the feature vectors, R, is a 180°-rotation
operator and D, is a 1-pixel-deviation operators along the given axis of the image. Then, the

final loss function was defined as follows.
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Liotal = (£ + 0.1LAC) + 5L, 56 + 0.05(Lperc + 0.1L45 (7.3)
+120(Lsyte + 0.1L551e) + 0.1Lgymm + 0.1L;,

LAC

, where indicates the loss function on autocorrelations of corresponding real-space objects,

which can be obtained by the inverse Fourier transform of the diffraction patterns. Note that the
inputs of the network were log-scaled by X, = In [1 + /max(/, 0)] and were normalized by

Xo = Xo/max(X,); therefore, the inverse operations of these processes were required to obtain
the autocorrelations. Using this composite loss function, network parameters were updated by
AdamW optimizer with gradually decreasing learning rates from 0.01 to 0.00001 [180].
Denoising of diffraction patterns by the trained k-space CNN would be called as deep

denoising hereafter.

7.3.  Phase retrieval of simulated diffraction patterns with deep denoising

Application of deep denoising to phase retrieval was accomplished based on the conventional
iterative projection algorithm, RAAR [49]. Starting from Eq. (2.8), the latter projection operator

was executed with a modified Fourier-space amplitude constraint defined as follows.
T = {z € C"*M||z| = Denoise[b]} (7.4)

, where Denoise[b] gives a denoised Fourier amplitude by deep denoising or the Gaussian
smoothing. Deep denoising replaced the values in regions with the photon counts above 0.5 per
pixel by output values of the k-space CNN with limited change ratios of £20% and suppressed
the values in remaining regions by 20%. The Gaussian smoothing convolved the Gaussian

kernel with o = 1.5 pixel. Then, the modified RAAR was defined as follows.
G = 1 [ fl fireal o () 0) 1— [(real), () 5
u = 2/3 re gs{re gy U }+ u |+ ( ﬁ)pm]jf u (7.5)

Then, phase retrievals were accomplished with 3,000 iterations of the modified RAAR for total
500 initial random phases with linearly increasing f from 0.5 to 1 and the best results were
selected based on R-factor. For phase retrievals on equal terms, fixed real-space supports were

used and they were obtained by thresholding objects, which were reconstructed by GPS and the
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shrink-wrap algorithm, by 1% of their maximum values followed by assigning 1-pixel margins

at their boundaries [51,63].
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Figure 7.3 - Phase retrieval of the simulated diffraction pattern with deep denoising. (A)
Reconstructed images from the noisy diffraction pattern, the pattern with the Gaussian
smoothing, and with deep denoising are presented. (B—D) Radial error (B, top), PRTF (B,
bottom), R-factor (C, top), pairwise distance (C, bottom), SSIM (D, top), and PSNR (D,
bottom) are calculated to evaluate reconstruction qualities. Adapted from Ref. [14], American
Physical Society.

Reconstructed images from the noisy diffraction pattern, the pattern with the Gaussian
smoothing, and with deep denoising showed significant differences. The result using deep
denoising provided better agreements with the given diffraction pattern based on lower k-space
error and higher PRTF compared to the other results, giving higher effective resolution based
on 1/e criterion [55]. In addition, convergence of phase retrieval was enhanced with lower R-
factor and real-space pairwise distance. Note that the pairwise distance was defined as

Apair(w, u") = ¥ilu — u'|;/¥;lu + u'|; and calculated for all possible pairs among the 10 best

images. Moreover, an image quality was also improved with higher SSIM and PSNR.
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Figure 7.4 - Box and whisker plots to compare deep denoising and the Gaussian smoothing

on phase retrieval. Differences of deep denoising (red) and the Gaussian smoothing (blue) on
R-factor, SSIM, and PSNR of the reconstruction results are presented with respect to the case
without applying the denoising method.

Investigation on change ratio statistics for R-factor, SSIM, and PSNR of reconstruction
results by applying deep denoising and the Gaussian smoothing during phase retrievals was
conducted for cases of the initial objects with and without assigning the shapes from EMNIST.
As a result, deep denoising showed enhancements on all metrics by giving lower R-factor and
higher SSIM and PSNR for both cases, while the Gaussian smoothing deteriorated the results.
Thus, deep denoising improved phase retrieval in every way by providing noise-suppressed
Fourier-space amplitude constraints, while the Gaussian smoothing showed even worse result

than without applying the denoising method.

7.4.  Phase retrieval of experimental data with deep denoising

Actual experiments were conducted to verify performance of deep denoising on experimental
data. The experiments were performed at nanocrystallography and coherent imaging (NCI)
beamline of PAL-XFEL in PAL [181]. Femtosecond X-ray pulses were generated by a self-
amplified spontaneous emission (SASE) process tuned at a photon energy of 5 keV with an
energy bandwidth of AE/E =~ 5 x 1073, Then, beams were focused into 5 pm (horizontal) x

7 um (vertical) by a pair of Kirkpatrick—Baez mirrors located at 5 m upstream from the sample,

- 101 -



giving a total flux of 8 x 10° photons-um™2 for a single pulse [107]. Single-pulse diffraction
patterns were measured by a 1-megapixel multi-port charge-coupled device (MPCCD), of
which the size of each pixel is 50 x 50 pm?, at 1.6 m downstream from a sample position [182].
Samples were core—shell nanoparticles consisting of trisoctahedral (TOH) Au core and
spherical TiOz shell. They were spread on 100-nm-thick SizN4s membranes and were mounted

in an imaging chamber. The chamber and beam paths were kept under vacuum.
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Figure 7.5 - Phase retrieval of the single-pulse diffraction pattern from the core—shell

nanoparticle with deep denoising. (A) Reconstructed images from the noisy diffraction
pattern, the pattern with the Gaussian smoothing, and with deep denoising are presented. (B,
C) R-factor (B, top), pairwise distance (B, bottom), SSIM (C, top), and PSNR (C, bottom) are
calculated to evaluate reconstruction qualities. (D) Angular correlation and density fluctuation
are also calculated for an additional evaluation. Adapted from Ref. [14], American Physical
Society.

Reconstruction of experimental data with deep denoising showed significant
improvements, giving lower pairwise distance and higher SSIM and PSNR. Unlike the results
with simulated data, the Gaussian smoothing also showed a similar result, but inferior to deep
denoising. While the Gaussian smoothing presented a considerably higher R-factor, deep

denoising only presented a slight increment due to a gap between measured and denoised
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diffraction patterns. Moreover, using an ideal structure with TOH core and spherical shell as a
reference, angular correlation and density fluctuation were calculated for an additional
performance evaluation. In comparison with the ideal structure, only deep denoising showed
comparable angular correlation and the lowest density fluctuation in shell regions. Considering
that phase retrievals of core—shell particles are challenging due to their structural heterogeneity
and weak scattering signals from the shells, deep denoising succeeded to offer definite

improvements in phase retrieval of actual noisy diffraction patterns from such complex particles.

Experiment Deep Denoising

Amplitude
(photons!/2)

Densky
(arb. unit)

Figure 7.6 - Denoising and phase retrieval of the single-pulse diffraction pattern from the

core—shell nanoparticle by various denoising methods. The results using the Gaussian
smoothing (GS), GS with VST, and BM3D with VST are presented to compare with deep
denoising.

To supplement the comparison group, block-matching and 3D filtering (BM3D)
algorithm and variance-stabilizing transformation (VST) were additionally confirmed [183].
BM3D is a conventional denoising algorithm based on an enhanced sparse representation,
providing the highest level of denoising performance among non-DL algorithms. Meanwhile,
as its name suggests, VST is a transformation that stabilize the variance of values from a certain

distribution into a specific constant, typically 1. As the concerned noises were mixed Poisson—
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Gaussian noises, a generalized Anscombe transformation was used as VST for the diffraction

patterns before applying the denoising methods and it is defined as follows [184].

VST[I] = 2\]max (1 + o2 +%,O> (7.6)

Using this transformation, the Gaussian smoothing and BM3D were applied to the experimental
data with VST and their influences on phase retrieval were additionally identified.
Unfortunately, both methods did not show any meaningful improvements, falling behind deep

denoising.
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Figure 7.7 - Denoising results near the zeroth speckle by various denoising methods. The

results using the Gaussian smoothing (GS), GS with VST, and BM3D with VST are presented
to compare with deep denoising.
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Unlike deep denoising, a comb pattern at the zeroth speckle remained in the pattern
denoised by BM3D with VST and a rough border also remained in the pattern denoised by the
Gaussian smoothing. These signals were a signature of multiple particles and were not desirable
for single-particle imaging. As the k-space CNN was trained with the diffraction patterns from
the single objects, deep denoising suppressed unwanted contributions from foreign particles,

leading to accurate phase retrieval.

7.5. Application of deep denoising on preconditioning the phase problem

As deep denoising provides an adjusted Fourier-space amplitude constraint for phase retrieval,
the operation of deep denoising can be treated as preconditioning by a matrix multiplication of

a diagonal matrix to the constraint. Preconditioning is an application of a specific
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transformation, preconditioner, that makes conditions of a certain problem more suitable to be
solved by numerical methods. In this regard, a preconditioned version of PDHG can be applied
to the phase problem in accordance with GPS, which is a kind of PDHG algorithms for phase

retrieval [185]. The preconditioned version of GPS is simply defined as follows.

Z(j+1) — prOXMl [Z(]) — M_lj?y(])]

y(]+1) = prox [y(]) + M 1T 1{22(]+1) _ Z(])}] (76)

, where M; and M, are preconditioners satisfying that M; and M, are positive definite.

Here, the proximal operator with the preconditioner is defined as follows.

proxy M) = argmm [f(x) +=|lx — U||M] (7.7)

When M; =t~ and M, = s~1I, the preconditioned GPS reduces to the plain GPS. Here,
for any positive-definite M; , the optimal M, is given as M, = F *M['F by Schur
complement and the y-subproblem can be approximately solved by fixed iterations of proximal

gradient descent method as follows [185].
y(j+1.0) = y(]')

y(j+1vk+1) = proxgg'G'n [y(j+1vk) + nT_l{Zz(j"'l) — Z(])}] (78)
y(j+1) = y(j"'l'p)

,where p > 1 and 7 is a proximal-gradient step size in range of 0 to 2Ain (M3)/A2,2x (M)
with the minimum and maximum eigenvalues, Ay, and A,.x, respectively. As the Fourier
transform is unitary and M, is assumed as a diagonal matrix, the eigenvalue of M, is
equivalent with that of M;. When only a single iteration with the maximum 7 is applied for

an approximate solution of the y-subproblem, the preconditioned GPS becomes as follows.

Z(]+1) = prOX [Z(]) — Ml_lf'y(])]

o | (7.9)
y(]+1) = proxjg'(;ﬂ']max [y(] + r’maxf]:' 1{22(]+1) — Z(])}]

, where Npax = 2min(M;1)/[max(M;1)]? = 2[min(M,)]?/max(M,). While the second
step in Eq. (7.9) is identical to the plain GPS, the first step can be calculated as follows.
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prox; [z] = (1 + oM)™'b © '*'8% + (1 + oM;) "' M, z (7.10)

The diagonal matrix defined from the change ratios by deep denoising is assigned to the

preconditioner, M;, with limiting its values as before. This algorithm would be called as deep-

preconditioned GPS (dpGPS) hereafter. Note that 7,,,,x Wwas given as 0.8 for the limited change

ratios of +28%.
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Figure 7.8 - Reconstruction results by HIO, GPS, and dpGPS. (A) An average of the best 5

reconstructed images by each method is presented. (B, C) R-factor (B, top), pairwise distance
(B, bottom), SSIM (C, top), and PSNR (C, bottom) are calculated to evaluate reconstruction

qualities.

Phase retrieval performance of dpGPS was evaluated with a simulated diffraction

pattern from a synthetic object. As a result, dpGPS outperformed the conventional algorithms,

HIO and GPS, with lower R-factor and pairwise distance and higher SSIM and PSNR. Thus,

deep denoising was verified to positively modify the conventional algorithms by providing

data-specific preconditioners for phase retrieval.

7.6.  Conclusion
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Deep denoising based on the k-space CNN was demonstrated to improve phase retrieval of
single-pulse diffraction patterns by properly suppressing the noise in such data. It outperformed
conventional denoising methods with significantly better reconstructed images when applying
to the phase retrieval algorithm. In addition, the employed data generation strategy maximally
excluded physical biases with a sufficient randomness, showing positive effects on
reconstructions of noisy single-object diffraction patterns. The use of partial convolutions also
offered the stable handling of partially damaged data, which usually suffered from X-ray
diffraction measurements. Since the development of XFEL has enabled time-resolved studies
using X-rays that were not possible with the conventional synchrotron facilities, effective and
efficient handling of strong noises from single-pulse measurements has been requested [8—11].
In this circumstance, the k-space CNN realized effective denoising of these noisy data solely
in the k-space. As inference of DNNs can be immediately achieved with a help of graphics
processing units (GPUs) after appropriate training procedures, it also realized rapid processing
of massive diffraction data from XFEL experiments. Thus, the k-space CNN would be a robust
platform dealing with the k-space data, which exhibit drastic deviation and partial loss with

strong noises.

* Source codes and trained parameters of the k-space CNN with modified phase retrieval

algorithms are available at https://github.com/sungyun98/PhaseRetrieval.

8. Real-time phase retrieval

8.1. Introduction

The phase problem is a problem of losing phase information from physical measurements and
it poses significant difficulties in various research modalities, especially crystallography and
high-resolution imaging [186]. Extracting such information that might be hidden in interference
patterns is crucial for interpretations of measured signals. While various methods have been
proposed for effective phase retrievals, they often demand long processing time and are

influenced by factors including noise, completeness of data, and other experimental constraints.
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In this circumstance, DL-based approaches have shown meaningful progresses dealing with
diffraction data by improving or replacing traditional iterative processes with faster and non-
iterative operations accelerated by GPUs [169,187]. Thus, efforts on developing DL methods
have been continued to facilitate tasks including denoising, classification, and phase retrieval,

despite several difficulties incurred in the X-ray regime [14,104,188-197].

Recent advancements in brighter X-ray sources, such as XFELs, which generate
ultrashort, extremely intense coherent X-ray pulses, have enabled observations of ultrafast
phenomena including molecular bonding, transient material dynamics, and hidden material
phases in nonequilibrium states [9,198-200]. CDI, which uses iterative methods to recover the
phase information, have shown a considerable potential for determining nanoscale structures of
individual specimens. However, diffraction signals, especially for single-pulse measurements
using XFELs, typically suffer low SNR and partial data occlusion and these have hindered
practical applications of DL in interpreting actual experimental data [173]. Here, we proposed
a DNN to recover phase information from the imperfect, photon-limited diffraction patterns,
realizing real-time reconstructions of real-space images for single-particle imaging experiments
using XFELs [15]. In this chapter, architecture and training strategy of the proposed network

and its application on simulated and experimental data would be introduced.

8.2.  Deep neural network for phase retrieval of diffraction data

The DNN for phase retrieval was based on a residual neural network (ResNet) with the
encoder—decoder architecture [201]. The network employed not only PCs but also depth-wise
separable convolutions (DSCs) and fast Fourier convolutions (FFCs) to accomplish a real-time
reconstruction of imperfect, photon-limited diffraction patterns [175,202,203]. Those
convolution operations are designed to improve performance of DNNs for specific applications;
PC enables a mask-aware operation by an equal allocation of valid values within convolving
regions, DSC offers an efficient operation with typically ten times fewer parameters than the
plain convolution while maintaining the performance, and FFC provides a global receptive field
by using the convolution on the Fourier transform of an input. A ResNet-based DNN named

LaMa has recently been proposed to have superior performance in image inpainting by
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employing FFCs in the entire network, despite its straightforward architecture [204]. Adopting
a concept of LaMa, DNN for phase retrieval was designed to have an architecture with two
newly introduced operations, an encoder with weight-corrected PCs (WPCs) to properly deal
with imperfect diffraction data and a two-stage decoder with an intermediate Fourier

modulation to increase consistency with the measured diffraction patterns.
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Figure 8.1 - Schematic diagrams of dataset generation (top) and architecture (bottom) of the

DNN for phase retrieval of imperfect, photon-limited diffraction patterns. Adapted from Ref.
[15], Springer Nature Limited.

Layer Output shape
o Structure (Cx Hx W)
0 1 x512 %512
1 WPC(7, 1, 3) + BN + ReLU 64 x 512 x 512
2 WPC(3, 2, 1) + BN + ReLU 128 x 256 x 256
3 WPC(3, 2, 1) + BN + ReLU 256 x 128 x 128
4 WPC(3, 2, 1) + BN + ReLU 512 x 64 x 64
5 DSC(3, 1, 1) + BN + ReLU + Split (256 +256) x 64 x 64
6-11 FFC residual blocks x 3 (256 +256) x 64 x 64
| (x0,x) > FFC(3,1, 1)+ BN + ReLU — (x3,x7) |
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(x1,x1) — FFC(3,1, 1)+ BN +ReLU — (x,,x3)
— (g + x5, x5 + x3)

12 FFC(3, 1, 1) + BN + ReLU (128 + 128) x 64 x 64
13 FFC(3, 1, 1) + BN + ReLU (64 + 64) x 64 x 64
14 FFC(3, 1, 1) + BN + ReLU (32 +32) x 64 x 64
15 Concatenate + DSC(3, 1, 1) + Sigmoid 1 X 64 x 64

X, — Fourier projection — x;

16 2 x 64 x 64
(xg,x;) — Concatenate — x,
17 DSC(3, 1, 1) + BN + ReLU + Split (32 +32) x 64 x 64
18-29 FFC residual blocks x 6 (32 +32) x 64 x 64
30 Concatenate + DSC(3, 1, 1) + Sigmoid 1 X 64 x 64

Total trainable parameters: 1.52 x 107

Table 8.1 - Full description of layers composing the DNN for phase retrieval. The layers

corresponding to encoder, base decoder, and diffraction-compensated decoder are colored in
green, orange, and blue, respectively. All convolution operations are given with kernel size,
stride, and padding parameters in parentheses and they are followed by batch normalization
(BN) and activation functions, ReLU, except for the last layers of decoders with the sigmoid
functions. Concatenation and split are performed along the channel axis.

As diffraction intensities typically decrease by Q~*, it is required to handle drastic
deviations of the signals for an appropriate reconstruction of an imperfect data. In this case, a
log scale can make them linear, but this is not sufficient for phase retrieval where an accurate
Fourier-space information is important. Thus, while PC revises an output value by multiplying
a reciprocal ratio of valid values in convolving regions, WPC assigns Q-dependent weights for
this correction based on the Guinier—Porod model [175,205]. The Guinier—Porod model
describes a radial intensity distribution of small-angle scattering signals from a sample with a

specific shape. For a smooth sphere, it gives the following relations.

2N2
Gexp(—RSQ ) forQ < Q,
1(Q) = 212 4 (8.1)
G exp <—R 5Q1) (%) , forQ>0Q,

, where G is the Guinier scale factor, R is a radius of the sphere, and @, is a boundary value

between Guinier and Porod models, giving Q; = vV10/R. As measured diffraction patterns are
in a unit of pixels, R is given by m/o with an oversampling ratio, o. Then, with the weights

set as the intensity values in Eq. (8.1), an operation of WPC is finally defined as follows.
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, where x is an input, M is a binary mask for valid data points, W is the Q-dependent
weights. Note that this operation is executed for data points in convolving regions. After the
encoder extracted feature vectors from input diffraction patterns with a help of WPCs, the two-
stage decoder generated real-space images with a help of FFCs, which refer the Fourier-space
information. A reason of the two-stage structure was that initial Fourier-space information
might be faded out while passing deep layers of the network, even though residual structures
suppress such effect. Thus, the Fourier modulation in the diffraction-compensated decoder
forcibly recalled an initial Fourier-space information by concatenating an output of the base
decoder and the output with a Fourier-space projection onto the measured data before feeding
to its residual blocks, increasing the consistency with the measured diffraction data. These
components worked together for a successful phase retrieval of imperfect, photon-limited
diffraction patterns and this DL-based phase retrieval would be called as deep phase retrieval

(DPR) hereafter.

Generation of datasets for training, validation, and test of the proposed network was
conducted by a diffraction model with pseudorandom real-space objects. Shapes and internal
densities of the objects were assigned by images randomly selected from publicly available
image datasets, EMNIST and CIFAR-100 [176,177]. Specifically, EMNIST images were
enlarged by maximum filters with random widths from 3 to 7 pixels and were modified by
affine transforms with random angles from 0° to 90° and random scales from 0.8 to 1.5. Then,
the images were cropped into 64 x 64 squares, giving oversampling ratios approximately from
10 to 20 along each dimension for 512 x 512 windows. CIFAR-100 images were cropped into
rectangles covering random scales from 0.08 to 1 with random aspect ratios from 0.75 to 1.33,
and they were resized into 64 x 64 squares to match their size with EMNIST images. Then, the
image pairs were combined to generate final pseudorandom objects. These objects maximally

excluded any physical or human biases, leading to a general applicability of DPR.

The diffraction model took account of limited photon counts and transverse coherence,

-111-



reflecting factors of single-pulse measurements using XFELs. Note that the model assumed a
typical CDI scheme that impose nonnegative real-valued objects, which is legitimate in X-ray
diffractions of specimens with weak scattering and negligible absorption, and an influence of
longitudinal coherence is naturally ignored [25,136]. Starting from basic diffraction patterns
obtained by the Fourier transform of the objects, the transverse coherence was applied based
on the Gaussian Schell model using Eq. (1.82) with random transverse coherence lengths from
180 to 220 pixels [31]. Then, the patterns were scaled to have total diffraction intensities
randomly from 10° to 107 and mixed Poisson—Gaussian noises were added like as Eq. (7.1) with
o = 1/2.35482, which gave FWHM of 1 for the Gaussian distribution. Final diffraction
patterns were occluded by random masks consisted of irregular masks and center masks. The
irregular masks were from NVIDIA Irregular Mask Dataset and their occlusion ratios were
limited up to 50% [175]. The center masks were generated with random radii from 8 to 32 pixels
and positional deviations from —8 to 8 pixels along each dimension. Total 96,000 data were
generated for training, 12,000 for validation, and 12,000 for test of the network. Note that
multiple scattering was ignored by satisfying Eq. (1.53) [24]. If multiple scattering was not
negligible, such effect should be considered using appropriate methods such as the multislice

method [26].
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Figure 8.2 - Ablation studies on loss function components. R-factor, PSNR, and SSIM are
given in order.

A composite loss function was used for the training of the network. It was comprised
by MAE and perceptual loss described in Eq. (7.2) with gradient loss and ground-truth R-factor

defined as follows.

Zviatollvui — Vvlly
Zviio 1

YillFul; — |1Fvl;l
, RST(u,v) = 8.3)
F SIFo, (

Lgrad (wv) =
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Then, after an ablation study on each loss function component, the final loss function was

defined as follows.
Liotal = L+ 10Lgraq + 0.1Lperc + 0.01RE’T (8.4)

Here, the perceptual loss used outputs of 4th and 5th blocks of ImageNet-pretrained VGG-19
[178]. Outputs of the network were scaled based on the input diffraction patterns, and they
assigned additional weights for a calculation of the loss function to linearly reduce influences

of weak or largely masked data during training procedures. These operations were defined as

follows.
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Figure 8.3 - Training results of DPR with different conditions. (A, B) Evolution of
validations loss (A) and evaluation metrics (B) are presented to verify the architecture of
DPR. Cases of DPR (WPC+D), encoder based on PC (PC+D), encoder based on FFC
(FFC+D), and without the diffraction-compensated decoder (WPC) are given for a
comparison. Differences with DPR are verified by the Mann-Whitney U test (not indicated,
p<1078 ***108<p<0.001; **0.001 <p<0.01; ns, p > 0.05). (C) Changes of evaluation
metrics with different sizes of training datasets. R-factor, PSNR, and SSIM are given as the
evaluation metrics in order. Adapted from Ref. [15], Springer Nature Limited.

Using the generated dataset and loss function, the network was trained by the AdamW
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optimizer with a weight decay of 0.0001, iterating over 500 epochs with a learning rate of 0.001
followed by 100 epochs with a learning rate of 0.0001 [180]. All training procedures were
accomplished using twelve GeForce RTX 3090 GPUs (NVIDIA Corp.). After training the
network, the architecture of DPR was verified by comparing with different architectures
including DPR with a PC-based decoder, DPR with an FFC-based encoder, and DPR with a
single-stage decoder without diffraction-compensated decoder. Evaluation metrics were R-
factor, PSNR, and SSIM, and Mann—Whitney U test was performed on each metric to identify
statical differences. As a result, the WPC-based encoder outperformed the other encoders with
the lowest R-factor, while maintaining or surpassing PSNR and SSIM. In addition, even though
the single-stage decoder had much more trainable parameters by doubling the residual blocks
instead of the diffraction-compensated decoder, the two-stage decoder showed significantly
better performance with 43% fewer trainable parameters. Thus, the architecture of DPR was
demonstrated to have superior performance on effective and efficient handling of imperfect,

photon-limited diffraction patterns.

An influence of the size of the training dataset was also identified by doubling the size
of the dataset from 12,000 to 192,000 for the training procedure. Unsurprisingly, increasing the
size led to enhance the performance, but the performance improvements were quickly saturated.
This confirmed an adequacy of the size of the training dataset, but the saturation might imply a
limitation of the used dataset generation policy. In this regard, the AdamWR optimizer with
adaptive sharpness-aware minimization (ASAM) was employed in the training procedure to
improve performance and general applicability of DPR, instead of the plain AdamW optimizer
[180,206]. The AdamWR optimizer is equal to the AdamW optimizer but updating the learning
rate by cosine annealing with warm restarts. The learning rates were limited between 10 and
0.005, respectively, and the period of the cosine annealing was doubled at the end of the period
starting with an initial period of 40. ASAM is a two-step optimization strategy to seek flat
minima in optimization that mostly lead to lower generalization loss. Parameters of ASAM
were set as p=0.2 and 7 =0.01. Both methods were demonstrated to improve

generalization performance.
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8.3.  Deep phase retrieval on simulated diffraction patterns
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Figure 8.4 - Phase retrieval of the simulated diffraction patterns by DPR. (A, B) Examples

(A) and evaluation metrics (B) of reconstructed images from the diffraction patterns with
irregular masks or a 16 x 16 center mask are presented to compare DPR trained by the
AdamWR optimizer with ASAM with DPR trained by the AdamW optimizer (DPRo), DPR
with the refinement (DPR+R), HIO, and GPS. R-factor, PSNR, and SSIM are given as the
evaluation metrics in order. Differences with DPR are verified by the Mann-Whitney U test
(not indicated, p < 1078; ***1078 <p <0.001; **0.001 <p <0.01; ns, p > 0.05). (C) Processing
time is provided for each phase retrieval method. Adapted from Ref. [15], Springer Nature
Limited.

Using the trained DPR, comparisons with conventional phase retrieval algorithms, HIO and
GPS, were conducted to validate its excellence [4,63]. DPR trained by the AdamW optimizer

and DPR with a refinement was also compared to check improvements from using the
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AdamWR optimizer with ASAM. An execution of each conventional algorithm was
accomplished as follows: for the case of HIO, 900 iterations of HIO were conducted with =
0.9 followed by 100 iterations of ER; for the case of GPS, 1000 iterations of GPS-R were
conducted with t =1, s = 0.9, ¢ increasing from 0.01 to 1 by a factor of 10 after 400 and
700 iterations, and y = 1/2a? with a decreasing from 1024 by 10% after every 100
iterations. Both algorithms started with 100 initial random phases and the shrink-wrap
algorithm was employed to update real-space supports with o decreasing from 3 pixels by 1%
and a threshold of 20% of the maximum value after every 50 iterations [51]. Here, initial real-
space supports were given as 60 x 60 squares. Then, final images were obtained from averages
of'best 5 images based on R-factors. Meanwhile, the refinement for DPR was simply performed
by 50 iterations of GPS-R with t =1, s = 0.9, ¢ increasing from 0.1 to 1 after 20 iterations,
and y = 1/2a? with a decreasing from 1024 by 20% after every 10 iterations. Here, real-
space supports were fixed by thresholding the output of DPR at 1% of the 99th percentile value.

As expected, DPR gained a slight improvement on its performance when using the
AdamWR optimizer with ASAM compared to that trained by the AdamW optimizer, especially
for the case with irregular masks; therefore, the use of the AdamWR optimizer with ASAM was
confirmed. Compared with HIO and GPS, DPR significantly outperformed with higher PSNR
and SSIM. In addition, DPR showed only small difference on PSNR and SSIM for both cases
with irregular masks and a 16 x 16 center mask, indicating its robustness on masking shape and
area. Despite its superior performance, it showed higher R-factors than GPS for the case with
irregular masks. However, considering that R-factor was the measure based on the measured
diffraction patterns that were buried by strong noises, significantly higher PSNR and SSIM
from using DPR implied that it offered accurate reconstructions regardless of the noises in given
diffraction signals. Otherwise, the conventional algorithms were directly projecting onto the
measured data, naturally providing lower R-factors, but influences of the noises could not be
sufficiently avoided. Even in this circumstance, DPR provided lower R-factors for the case with
the center mask. When the refinement was additionally employed to DPR, R-factors became
lower, even lower than the case of GPS, but with a sacrifice of PSNR and SSIM. Thus, if it was
required to maximally minimize R-factors for certain situations, DPR with the refinement

would offer the best results; otherwise, DPR would provide better real-space images.
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DPR also offered dramatically reduced processing times compared to the conventional
algorithms with a help of its efficient architecture. Its processing times were 9.02 + 0.00215 ms
and 52.2 +2.45 ms per a single diffraction pattern without and with the refinement, respectively,
using one GeForce RTX 3090 GPU. This value was more than 1,000 times faster than phase
retrieval using conventional algorithms, and 100 times faster even with refinement. Moreover,
considering that the conventional algorithms demand to search rather tight real-space supports
for successful reconstructions, DPR realized immediate reconstructions by eliminating such
meticulous human inspections, thereby facilitating real-time phase retrievals in substance. The
only thing required by DPR was properly feeding the measured diffraction data together with
corresponding masks after unit conversion from analog-to-digital unit (ADU) to photon count,
and these were typical predefined by the detector. Experiments using XFELs bring enormous
amounts of data, and this becomes severe for MHz-repetition-rate XFELs, which have recently
been developed for further scientific studies [207]. In this circumstance, a rapid processing of

diffraction data is mandatory to afford such massive data, and DPR can be a very solution.

8.4. Deep phase retrieval on experimental data

After the successful demonstration of DPR on the test dataset, applicability of DPR on
experimental data was evaluated. For this purpose, actual imaging experiments were performed
at the NCI beamline of PAL-XFEL in PAL [181]. Femtosecond X-ray pulses were generated by
the SASE process tuned at a photon energy of 5 keV with an energy bandwidth of AE/E =
5 x 1073. Generated beams were focused into 5 um (horizontal) x 7 um (vertical) by a pair of
Kirkpatrick—Baez mirrors located at 5 m upstream from the sample, giving a total flux of 8 x
10° photons-um™2 for a single pulse [107]. Single-pulse diffraction patterns were measured by
a 1-megapixel MPCCD, of which the size of each pixel is 50 x 50 pm?, at 1.6 m downstream

from a sample position [182]. This gave a pixel resolution of 15.5 nm for a 512 x 512 window.
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Figure 8.5 - Phase retrieval of single-pulse diffraction patterns from actual experiments at
PAL-XFEL by DPR. (A) Diffraction patterns and reconstructed images are presented with
local R-factors. Results from using DPR with the refinement (DPR+R) and conventional
algorithms, HIO and GPS, are also presented for a comparison. (B) PCCs for all real-space
image pairs are given for a reference. Adapted from Ref. [15], Springer Nature Limited.
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For single-particle imaging, specimens were chosen as Ag nanoparticles having
specific shapes of flower and cube with approximate widths of 250 nm and 150 nm, respectively,
and they were spread on 100-nm-thick SizN4 membranes. The membranes with samples were
mounted in an imaging chamber, and the chamber and beam paths were kept under vacuum.
After single-pulse diffraction measurements, background signals were subtracted from
measured diffraction patterns, and the unit of measured values was converted from ADU to
photon count based on their distribution. Then, missing parts of the patterns were filled by
values at centrosymmetric points based on the Friedel’s law. Phase retrieval was conducted like
as the case with the test dataset except for initial real-space supports that were given by 30 x 30
squares for the conventional algorithms. As ground-truth real-space images cannot be given for
the experimental data, the Pearson correlation coefficient (PCC) and local R-factor were
employed instead of PSNR and SSIM. PCC, which is defined as PCC(u,v) = gy,/0,0y,
represents a linear correlation between two images, and the local R-factor is an element-wise
R-factor calculated for every data point with a photon count over 0.5, indicating regional
Fourier-space conformities with measured diffraction patterns. Both metrics gave additional
information related to real-space images.
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Figure 8.6 - Radial distributions of local R-factors from reconstructions of experimental

data measured at PAL-XFEL. Results from using DPR, DPR with the refinement (DPR+R)
and conventional algorithms, HIO and GPS, are presented.

Using the as-trained DPR without any fine-tuning procedures, DPR succeeded to
directly reconstruct real-space images from the experimental data. The results showed strong
positive linear correlations with results from using the conventional algorithms. Their shapes

were considerably analogous with other results, while their internal densities slightly varied
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upon the reconstruction methods. Considering that the internal density distributions were
related to high-Q signals in the Fourier space, the local R-factor could be used to verify their
appropriateness, and DPR provided high-contrast images with significantly lower local R-
factors at major speckle patterns away from a diffraction center compared to the conventional
algorithms, representing its remarkable accuracy on such high frequency components. While
the conventional algorithms were strongly influenced by dominant low-Q signals near the
diffraction center, DPR was not biased to such signals, properly reconstructing based on overall
diffraction signals. In addition, DPR with the refinement provided real-space images that more

followed the low-Q signals than without the refinement, offering more balanced results.
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Figure 8.7 - Phase retrieval of experimental data measured at PAL-XFEL by DPR without

centrosymmetric filling. Results from using DPR with the refinement (DPR+R) and
conventional algorithms, HIO and GPS, are also presented for a comparison.

DPR also offered stable phase retrievals regardless of occlusion areas. Thus, the
robustness of DPR on strong noises and partial data loss from single-pulse diffraction

measurements truly realized real-time phase retrievals for CDI experiments, handling massive
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data acquisition of XFELS by minimizing both data processing and human inspections.
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Figure 8.8 - Phase retrieval of single-pulse diffraction patterns from CXIDB by DPR. (A)

Diffraction patterns and reconstructed images are presented with local R-factors. Results from
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also presented for a comparison. (B) PCCs for all real-space image pairs are given for a
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reference. Adapted from Ref. [15], Springer Nature Limited.

As the data measured at PAL-XFEL only included diffraction patterns of Ag
nanoparticles with identical experimental parameters, additional evaluation of DPR was
performed with data from a public database, Coherent X-ray Imaging Data Bank (CXIDB), to
verify its general applicability [208]. Among data deposited in CXIDB, three diffraction
patterns of chlorovirus PBCV-1, bacteriophage T4, and Fe>Os ellipsoid nanoparticle in datasets
from ID 10 to ID 14 were selected [209]. These data were obtained from X-ray pulses with a
photon energy of 1.2 keV and were measured by 1-megapixel pnCCD, of which the size of each
pixel is 75 x 75 pum?, positioned at 0.738 m downstream from the sample [210]. This gave a
pixel resolution of 19.9 nm for a 512 x 512 window and 9.93 nm after 2 x 2 binning. Note that
the binning was conducted on the diffraction pattern of Fe2O; ellipsoid nanoparticle due to its

small size.
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Figure 8.9 - Radial distributions of local R-factors from reconstructions of experimental data

from CXIDB. Results from using DPR, DPR with the refinement (DPR+R) and conventional
algorithms, HIO and GPS, are presented.

Despite completely different sample types and experimental conditions, DPR showed
consistent performance with the data from CXIDB like as with the data measured at PAL-XFEL.
Resultant images from using DPR showed distinct shapes that had strong positive correlation,
and their internal densities were clearer with well-matched high-Q amplitudes in the Fourier
space compared to those from the conventional algorithms. Thus, DPR was successfully
verified its general applicability on various data from single-particle imaging experiments using

XFELs.
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8.5. Conclusion

With a help of dedicated architecture and training strategy, DPR was demonstrated to offer a
generalized superior performance on phase retrievals of various imperfect, photon-limited
diffraction patterns that typically obtained by single-pulse diffraction measurements with
XFELs. It outperformed conventional algorithms regardless of strong noises and partial data
loss, providing high-contrast real-space images with distinct shapes. While the conventional
algorithms required tight real-space supports to be given for successful reconstructions, DPR
eliminated such human-involved tasks, thereby enabling fully automatic real-time
reconstructions. It also had potentials to cover extreme noise levels, complex-valued objects,

and multiple scattering effects by modifying the model.

Leveraging the Guinier—Porod model to guide lost Fourier-space information,
excellence of WPC emphasized an importance of appropriate processing of data that
concerntheir characteristics. Although the WPC-based encoder occupied only 10% of total
trainable parameters in DPR, it showed meaningful improvements in phase retrievals. Thus, a
concept of WPC could be applied to various data, such as X-ray absorption or emission, by
modifying convolution operations based on appropriate physical models to improve
performance of CNNs when dealing with incomplete data. Thus, DPR can be a robust platform
to handle various kinds of diffraction signals with high tolerance on noises and partial
occlusions. Moreover, handling huge amounts of data has been demanding with the
development of high-repetition-rate XFELs, thereby the importance of fast data processing
becomes critical. In this circumstance, DPR is expected to play an important role in X-ray

science with its accessibility.

* Source codes and trained parameters of DPR are available at

https://github.com/sungyun98/DPR.
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V. Summary

This thesis includes theoretical backgrounds and introductions of developed experimental
techniques and DL models to improve conventional diffraction imaging methods. Since
development and demonstration of CDI with phase retrieval algorithms, CDI has facilitated
noninvasive imaging of various specimens in nanoscale resolutions using coherent X-rays.
However, there are some restrictions mainly by experimental constraints, and overcoming such

limitations require deep understanding of diffraction and phase problem.

Starting from a brief introduction on the electromagnetic wave equation, scattering of
photons, quanta of electromagnetic radiation fields, was described to comprehend the light—
matter interactions in the manner of the quantum mechanics, followed by the Lippmann—
Schwinger equation with the first-order Born approximation that consequently corresponds to
the case of typical X-ray diffraction imaging schemes. Additionally, the Fresnel-Kirchoff
diffraction formula was explained to understand diffraction phenomena in the optical point of
view. After giving overall remarks on diffraction of electromagnetic waves, the convenient
geometric configurations for elastic scattering, the Ewald sphere, was introduced with the
Bragg’s law, giving further insights into 3D reciprocal-space mapping. Then, as the coherence
is an important keyword for diffraction imaging, being directly related to its resolution,
derivations of its quantitative expressions, longitudinal and transverse coherence lengths, were
given. Lastly, two diffraction imaging methods, CDI and ptychography, were briefly introduced

with advantages and disadvantages of each method.

Another key component of CDI is phase retrievals, which are computational
procedures to recover the lost phase information of measured diffraction intensities. With a help
of numerical algorithms instead of image-forming optics, CDI is not constrained by a resolving
power of such optical components, giving diffraction-limited performance in principle. In this
regard, overall reviews on representative iterative phase retrieval algorithms were provided
with metrics for estimating effective resolutions of reconstructed real-space images. Moreover,
the Lagrange dual formulation of the phase problem and related primal-dual algorithms were
also introduced, followed by the foundation of GPS, giving better understanding of the phase

problem and convex optimization.
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This thesis also dealt with the theory of vortex beams. Due to their unique wavefront
structures and inherent OAMs, vortex beams have been spotlighted for various research fields.
They have been reported to improve the resolution of diffraction imaging methods such as
ptychography, and selective transitions by means of controlling total angular momenta.
Especially, helical dichroism, which is a dichroism for topological charges of the vortex beams,
has recently demonstrated to have a sensitivity on various chiral systems. Thus, light-matter
interaction with vortex beams and corresponding helical dichroism were theoretically described.
A basic principle of SZPs was also given as a representative of the X-ray optics for the

generation of vortex beams.

Based on these background knowledges, experimental techniques to enhance
performance and functionality of diffraction imaging methods were introduced. The first
method is multidistance CDI. When investigating large samples, a finite size of a detector limits
an image resolution as sufficiently long SDD is required for a reciprocal-space sampling small
enough to capture the zeroth speckle signals, of which the sizes are inversely proportional to
the sizes of the samples. These signals reflect overall shapes of the samples, thereby play an
important role in phase retrieval. In this circumstance, the multidistance CDI employed
measurements of diffraction patterns at multiple distances, separately obtaining low- and high-
resolution information from long- and short-SDD measurements, respectively. Adaptive phase
retrieval algorithm was also developed for phase retrieval of multiple diffraction patterns with
different reciprocal-space samplings. Using this method, 3D tomography of a mesoporous
nanoparticle was successfully conducted, giving effective resolutions of 8.7 nm in 2D and 13.3
nm in 3D. Considering that total exposure times were limited to minimize deformation of the
sample by radiations, these values were in the highest level compared to the state-of-art results
using X-rays, and roughly four times better than those from previous nondestructive imaging
of porous materials. Thus, the multidistance CDI enables high-resolution imaging of the large

samples without sacrificing the resolutions, while taking all advantages of CDI.

Other methods are off-axis vortex beam ptychography and helical dichroism on
ferroelectric topological defects, and they both employed the vortex beams. The off-axis vortex

beam ptychography were demonstrated to enhance edge responses in amplitude of
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reconstructed objects by three times and improve accuracy in their phase by 1 percentage point
from numerical experiments with weakly scattering objects. These effects came from the unique
wavefront structures of the vortex beams. In addition, as a linear phase ramp from the off-axis
geometry makes phase retrieval difficult, correction of a diffraction center was suggested and
verified its utility. In actual experiments, edge contrasts exhibited directionality, showing
inversion of the contrast in a case of an opposite off-axis direction, while acquiring accurate
phase of the sample. Thus, the oft-axis vortex beam ptychography offers edge-enhanced, phase-

sensitive imaging of weakly scattering samples.

Meanwhile, the topological defects have attracted research interests due to their
characteristic morphologies and potentials on inducing hidden properties of materials. In this
regard, helical dichroism that has been reported to have remarkable sensitivities to chiral
structures would be a promising tool to identify their structural information. Thus, helical
dichroism on the ferroelectric topological defects was investigated with an epitaxial thin film
of BiFeOs, which exhibited well-defined stripe ferroelectric domains along its pseudocubic [0
1 O]-direction. As a result, an existence of helical dichroism from the ferroelectric structures
were experimentally demonstrated with differences by the sample orientations. Directional
information on orbital configurations was also obtained by extracting linear dichroism from the
measured data. Although further analyses are required to interpret the results, the physical
model was also suggested for single-crystal ferroelectric materials with arbitrary orientations.
Thus, these findings help guiding potential applications on functional imaging of ferroelectric
materials, and especially, a combination of helical dichroism with Bragg ptychography, which
can identify atomic displacement fields, is expected to facilitate investigation of OAM-sensitive

structures with an exceptional sensitivity in a nanoscale resolution as a potential application.

Furthermore, DL models were also developed to deal with noisy, imperfect diffraction
patterns from single-pulse measurements using XFELs. Since developments of XFELSs, time-
resolved studies have been realized in the X-ray regime. However, intense, but limited
intensities of X-ray pulses lead to strong noise and partial occlusion by a use of beam stops. In
addition, diffraction signals drastically decrease with increasing momentum transfer

magnitudes, and these characteristics make diffraction data difficult to be handled. In this
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circumstance, DL models for denoising and real-time phase retrieval were proposed, and their
performances were validated for both simulated and experimental data. DNN architectures of
the models were based on CNNs in encoder—decoder structures with several new operations;
the network for denoising employed skipped connections between all layers of encoder and
decoder and with an interlayer of pointwise convolution on the centrosymmetric points, and the
network for real-time phase retrieval employed WPC-based encoder and two-stage decoder
with FFC-based residual blocks and intermediate Fourier modulation. Both models adopted to
use pseudorandom objects from a combination of preexisting datasets to generate noise-buried,
partially damaged diffraction patterns, maximally excluding physical biases for general
applicability. A major difference between two models dealing with diffraction patterns was that
the denoising model log-scaled the input data, while the real-time phase retrieval model
introduced WPCs for encoding layers, assigning positional weights based on the Guinier—Porod
model. After appropriate training procedures, both models showed significant improvements
compared to the conventional methods; the denoising model was verified to enhance the
conventional phase retrieval algorithm by applying denoised diffraction patterns as Fourier-
space constraints or preconditioners, and the real-time phase retrieval model was demonstrated
to realize 1,000 times faster phase retrieval while providing much better results compared to
the conventional algorithms. Considering overflowing massive datasets from experiments using
XFELs, these DL models will serve as a solid platform for a rapid data processing of diffraction

data.

In conclusion, this thesis contributes to the development of functional nanoimaging
using coherent X-rays, focusing on experimental techniques and DL methods for a
reinforcement of CDI and ptychography. Diffraction imaging has been a great tool for an
investigation of nanoscale structures inside various samples, but recently, it has been requested
to enhance performance and functionality due to rising of emerging materials with complicated
properties to be analyzed. In this situation, the contents of this thesis will assist future research

applications that uses diffraction imaging methods.
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